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RANDOMIZED PICK-FREEZE FOR SPARSE SOBOL INDICES ESTIMATION
IN HIGH DIMENSION

Yohann de Castro1 and Alexandre Janon1

Abstract. This article investigates selection of variables in high-dimension from a non-parametric
regression model. In many concrete situations, we are concerned with estimating a non-parametric
regression function f that may depend on a large number p of inputs variables. Unlike standard pro-
cedures, we do not assume that f belongs to a class of regular functions (Hölder, Sobolev, . . . ), yet we
assume that f is a square-integrable function with respect to a known product measure. Furthermore,
observe that, in some situations, only a small number s of the coordinates actually affects f in an
additive manner. In this context, we prove that, with only O(s log p) random evaluations of f , one can
find which are the relevant input variables with overwhelming probability. Our proposed method is
an unconstrained �1-minimization procedure based on the Sobol’s method. One step of this procedure
relies on support recovery using �1-minimization and thresholding. More precisely, we use a thresholded-
LASSO to faithfully uncover the significant input variables. In this frame, we prove that one can relax
the mutual incoherence property (known to require O(s2 log p) observations) and still ensure faithful
recovery from O(sα log p) observations for any 1 ≤ α ≤ 2.
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1. Introduction

1.1. Sensitivity analysis and Sobol indices

Some mathematical models encountered in applied sciences involve a large number of poorly-known parame-
ters as inputs. It is important for the practitioner to assess the impact of this uncertainty on the model output.
An aspect of this assessment is sensitivity analysis, which aims to identify the most sensitive parameters, that is,
parameters having the largest influence on the output. The parameters identified as influent have to be carefully
tuned (or estimated) by the users of the model. On the other hand, parameters whose uncertainty has a small
impact can be set to a nominal value (which can be some special value, for which the model is simpler).

In global (stochastic) variance-based sensitivity analysis (see for example [22] and references therein), the
input variables are assumed to be independent random variables. Their probability distributions account for the
practitioner’s belief about the input uncertainty. This turns the model output into a random variable, whose
total variance can be split down into different partial variances (this is the so-called Hoeffding decomposition,
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also known as functional ANOVA, see [18]). Each of these partial variances measures the uncertainty on the
output induced by each input variable uncertainty. By considering the ratio of each partial variance to the
total variance, we obtain a measure of importance for each input variable that is called the Sobol’s index or
sensitivity index of the variable [23,24]; the most sensitive parameters can then be identified and ranked as the
parameters with the largest Sobol indices. Each partial variance can be written as the variance of the conditional
expectation of the output with respect to each input variable.

Once the Sobol indices have been defined, the question of their effective computation or estimation remains
open. In practice, one has to estimate (in a statistical sense) those indices using a finite sample (of size typically
in the order of hundreds of thousands) of evaluations of model outputs [27]. Indeed, many Monte Carlo or quasi
Monte Carlo approaches have been developed by the experimental sciences and engineering communities. This
includes the Sobol pick-freeze (SPF) scheme (see [13, 24]). In SPF a Sobol index is viewed as the regression
coefficient between the output of the model and its pick-freezed replication. This replication is obtained by
holding the value of the variable of interest (frozen variable) and by sampling the other variables (picked
variables). The sampled replications are then combined to produce an estimator of the Sobol index.

1.2. High-dimensional contexts

The pick-freeze scheme is used on models with a reasonable (typically, less than one thousand) number of
inputs. When there is a large number of input parameters (what we call a high-dimensional context), this scheme
will require a number of model evaluations which is generally too large to be computed in practice. Hence, in
high-dimensional contexts, some specific sensitivity analysis methods exist, such as screening methods (for
instance, Morris’s scheme [21]), but they do not target the estimation of Sobol indices. Note that in [28], an
interesting method for estimating Sobol indices is proposed and seems to be applicable in high-dimensional
contexts. This method is not based on a sparsity assumption (cf. infra) like ours, and is not applied on models
with more than one hundred parameters. Moreover, it is worth noting that alternative Monte-Carlo pick-freeze
schemes can be preferable for estimating small Sobol indices [25]; however this does not adress the curse of
dimensionality, in the sense that the required number of evaluations of f is still proportional to the total
number of input variables.

Besides, models with a large number of input parameters often display a so-called sparsity of effects property,
that is, only a small number of input parameters are actually influent: in other terms, we want to efficiently
estimate a sparse vector of Sobol indices. Sparse estimation in high-dimensional contexts is the object of high-
dimensional statistics methods, such as the LASSO estimator.

In our frame, we would like to find the most influent inputs of a unknown function that is to be described. This
framework is closely related to exact support recovery in high-dimensional statistics. Note exact support recovery
using �1-minimization has been intensively investigated during the last decade, see for instance [12,19,29,32] and
references therein. We capitalize on these works to build our estimation procedure. Observe that, for random
design matrices, one often invoke the mutual incoherence property [9] to derive support recovery guarantees.
Indeed, another approach relies on the Irrepresentability Condition (IC) [12, 32]. Yet this approach is rather
stringent and, to the best of our knowledge, proving (IC) for random matrices remains a challenging issue.

However, this article develops a new analysis of support recovery allowing to “break” the square-root bottleneck
of standard procedures such as the mutual incoherence property (see Sect. 3). Interestingly, we prove that one
can relax the mutual incoherence property (known to require O(s2 log p) observations) and still ensure faithful
recovery using thresholded-LASSO from O(sα log p) observations for any 1 ≤ α ≤ 2.

We also mention that there exist methods that rely on additive splines and sparsity (COSSO) to perform
variable selection (see [11] and references therein). In the paper, we provide a comparison, on a benchmark
example, with these methods.

Recall the main goal of this paper is to draw a bridge, which, to the best of our knowledge, has not been
previously drawn, between Sobol index estimation via pick-freeze estimators and sparse linear regression models.
This bridge can be leveraged so as to propose an efficient estimation procedure for Sobol indices in high-
dimensional sparse models.
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1.3. Organization of the paper

The contribution of this paper is twofold: Section 2 describes a new algorithm to simultaneously estimate
the Sobol indices using �1-relaxation and give elementary error analysis of this algorithm (Thms. 2.2 and 2.8),
and Section 3 presents a new result on exact support recovery by Thresholded-LASSO that relaxes mutual
incoherence property. In particular, we prove that exact support recovery holds beyond the Welch bound.

Appendix A gives the proofs of the results in Section 2. Appendix B.1 gives preliminary results for prov-
ing Theorem 3.3 of Section 3. The remaining appendices apply these results to different designs (leading for
Appendix B.2 to Thm. 3.3).

2. A convex relaxation of Sobol’s method

2.1. Notation and model

We consider the following non-parametric model. Denote by X1, . . . , Xp the input parameters, assumed to
be independent random variables of known distribution η. Let Y be the model output of interest:

Y = f(X1, . . . , Xp),

where f : �p → � is so that Y ∈ L2(η⊗p) and �ar(Y ) �= 0. Assume that f is additive, i.e.

f(X1, . . . , Xp) = f1(X1) + . . . + fp(Xp) (2.1)

for some functions fi : �→ �, i = 1, . . . , p. Note the only assumptions on the regression function f are:

• f is squared-integrable with respect to η⊗p;
• f is additive.

In Sobol’s method, we want to estimate the following vector:

S = (Si)
p
i=1 where Si =

�ar[�(Y |Xi)]
�ar(Y )

,

is the ith Sobol’s index of Y and quantifies the influence of Xi on Y . In this article we present a new procedure
for evaluating the Sobol’s indices when p is large. We make the assumption that the number of nonzero Sobol’s
indices:

s := #{i = 1, . . . , p s.t. Si �= 0}
remains small in comparison to p. Observe our model assumes that we know an upper bound on s. The Sobol’s
indices can be estimated using the so-called pick-freeze scheme, also know as Sobol’s method [23,24]. Let X ′ be
an independent copy of X and note, for i = 1, . . . , p:

Y i = f
(
X ′

1, . . . , X
′
i−1, Xi, X

′
i+1, . . . , X

′
p

)
. (2.2)

Then we have:

Si =
�ov(Y, Y i)
�ar(Y )

·

This identity leads to an empirical estimator of Si:

Ŝi =
1
N

∑
YkY i

k −
(

1
N

∑ Yk+Y i
k

2

)2

1
N

∑ (Yk)2+(Y i
k )2

2 −
(

1
N

∑ Yk+Y i
k

2

)2 ,

where all sums are for k from 1 to N , and {(Yk, Y i
k )}k=1,...,N is an iid sample of the distribution of (Y, Y i) of

size N . This estimator has been introduced in [20] and later studied in [13, 16].
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In the high-dimensional frame, the estimation of the p indices using Ŝi for i = 1, . . . , p would require (p+1)N
evaluations of f so as to generate the realizations of (Y, Y 1, . . . , Y p). This may be too much expensive when p
is large and/or evaluation of f is costly. Besides, thanks to our sparsity assumption, such an estimation “one
variable at a time” will be inefficient, as many computations will be required to estimate zero many times.
To the best of our knowledge, this paper is the first to overcome this difficulty introducing a new estimation
scheme.

Remark 2.1. If f is not additive, but that the non-additive part of f is neglectable (in the sense that the
interaction Sobol’s indices are significantly lower than the principal Sobol’s indices), one can consider that
this non-additive part is a noise, and use the robustness properties of both Sobol’s indices and the LASSO
procedures we will use in the sequel to deduce that our procedure is robust with respect to small non-additive
perturbations.

2.2. Multiple pick-freeze

We now generalize definition (2.2). Let F ⊂ {1, . . . , p} be a set of indices. Define Y F by:

Y F = f(XF ) where
(
XF

)
i
=

{
Xi if i ∈ F,

X ′
i if i ∈ F c.

where F c = {1, . . . , p} \ F . The name of the method stems from the fact that, to generate the Y F variable, all
the input parameters whose indices are in F are Frozen. In the pick-freeze scheme of the previous subsection,
only one variable was frozen at the time, namely F = {i}. We then define:

SF =
�ov(Y, Y F )
�ar(Y )

,

which admits a natural estimator:

ŜF =
1
N

∑
YkY F

k −
(

1
N

∑ Yk+Y F
k

2

)2

1
N

∑ (Yk)2+(Y F
k

)2

2 −
(

1
N

∑ Yk+Y F
k

2

)2 · (2.3)

Under additivity hypothesis (2.1), one has:
SF =

∑
i∈F

Si.

Now, let’s choose n ∈ ��, subsets F1, . . . , Fn of {1, . . . , p}, and denote by E the following vector of estimators:

E =
(
ŜF1 , . . . , ŜFn

)
. (2.4)

Notice that, once the F1, . . . , Fn have been chosen, the E vector can be computed using (n + 1)N evaluations
of f .

2.2.1. Bernoulli regression model

The choice of F1, . . . , Fn can be encoded in a binary matrix Φ with n lines and p columns, so that:

Φji =

{
1 if i ∈ Fj ,

0 otherwise.
j = 1, . . . , n and i = 1, . . . , p. (2.5)

It is clear that (SF1 , . . . , SFn) = ΦS, hence:
E = ΦS + ε, (2.6)
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where the ε vector defined by εj = ŜFi −SFi gives the estimation error of ΦS by E. In practice, the E vector and
the Φ matrix are known, and one has to estimate S. Thereby, equation (2.6) can be seen as a linear regression
model whose coefficients are the Sobol’s indices to estimate. Moreover, observe that n � p and S sparse, hence
we are in a high-dimensional sparse linear regression context. The problem (2.6) has been extensively studied
in the context of sparse estimation [1, 8, 19] and compressed sensing [4, 6], and a classical solution is to use the
LASSO estimator [26]:

Ŝ ∈ argmin
U∈�p

(
1
n
‖E − ΦU‖2

2 + 2r ‖U‖1

)
, (2.7)

where r > 0 is a regularization parameter and:

‖v‖2
2 =

n∑
j=1

v2
j , ‖u‖1 =

p∑
i=1

|ui|.

Many efficient algorithms, such as LARS [10], are available in order to solve the above minimization problem,
and to find an appropriate value for r. In high dimensional statistics, one key point for the LASSO procedure
is the choice of the Φ matrix. In the Compressed Sensing and high-dimensional statistics (see for instance [1–7]
and references therein), a random matrix with i.i.d. coefficients often proves to be a good choice, hence we will
study possible random choices for Φ.

Input: f (regression function), N (Monte-Carlo sample size), n (number of estimations) and r (regularization
parameter).

Output: Estimation Ŝ of the Sobol’s indices S.

(1) Randomly sample a 0-1 matrix Φ with Bernoulli distribution of parameter μ.
(2) Deduce from Φ the F1, . . . , Fn subsets using (2.5).
(3) Generate a N-sized sample of (Y, Y F1 , . . . , Y Fn).
(4) Use this sample in (2.3), for F = F1, . . . , Fn, to obtain the E vector (2.4).

(5) Solve problem (2.7) to obtain an Ŝ which estimates S.

Algorithm 1: Summary of the method “Randomized Pick-Freeze” (RPF) for Bernoulli matrices.

Given the binary constraint on Φ, we will choose a Bernoulli distribution with parameter μ ∈]0; 1[. In this model,
(Φji)j,i are independent, with for all i, j:

�(Φji = 1) = μ = 1 − �(Φji = 0). (2.8)

Theorem 2.2 (�∞ error bound). Suppose that:

(1) δ is a real in
]
0;

1 − μ

16s

[
;

(2) ε is a centered Gaussian vector whose covariance matrix has σ2 as largest eigenvalue;

(3) r = Aσ
√

μ(1 + δ)

√
ln p

n
for some A > 2

√
2.

Let:

t =

(
3
2

+
24(μ + δ)
1−μ

s − 16δ

)
r

μ
;

α = 1 −
(
1 − p1−A2/8

) (
1 − 2 exp

(−2nδ2μ2 + ln p
))

+ exp
(−2nδ2μ2 + 2 ln p

)
.
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Then, with probability at least 1 − α, any solution Ŝ of (2.7) satisfies:

max
i=1,...,p

|Ŝi − Si| ≤ t.

Proof. A proof can be found in Appendix A.1. �

Remark 2.3. For the probability above to be greater than zero, it is necessary to have:

n ≥ ln p

δ2μ2
≥ 256s2 ln p

μ2(1 − μ)2
· (2.9)

Remark 2.4. The statement of Theorem 2.2 can be compared to standard results in high-dimensional statistics
such as exact support recovery under mutual incoherence property [19]. Nevertheless, observe that a standard
assumption is that the column norm of the design matrix is

√
n while in our frame this norm is random with

expectation of order
√

μn.

Remark 2.5. In our context, the second hypothesis of the above theorem does not exactly hold; indeed, ε is only
asymptotically Gaussian (when N → +∞), see [16] for instance. However, for practical purposes, the observed
convergence is fast enough. One can also see a related remark in our proof of this theorem, in Appendix A.1.

Corollary 2.6 (Support recovery by Thresholded-LASSO). Let:

Smin = min
i=1,...,p
s.t. Si �=0

Si.

Then, under the same assumptions of Theorem 2.2, we have, with probability greater than 1 − α and for all
i = 1, . . . , p:

Ŝi > t =⇒ Si > 0,

and:

Ŝi < Smin − t =⇒ Si = 0.

Proof of Corollary 2.6. For the first point, notice that:

|Si| ≥ |Ŝi| − |Ŝi − Si| ≥ |Ŝi| − t > 0 if Ŝi > t.

For the second point: if Ŝi < Smin − t, we have:

|Si| ≤ |Si − Ŝi| + |Ŝi| < t + (Smin − t) = Smin,

and Si = 0 by definition of Smin. �

Remark 2.7 (important). Theorem 2.2 and Corollary 2.6 show that one can identify the most important inputs
of a function as soon as the corresponding Sobol indices are above the threshold t. Recall Thresholded-LASSO is
a thresholded version of any solution to (2.7). Moreover, observe that we do not address the issue of estimating
the Sobol’s indices. This can be done using a two-step procedure: estimate the support using Thresholed-LASSO
and then estimate the Sobol indices using a standard least squares estimator.
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2.2.2. Rademacher regression model

The choice of F1, . . . , Fn can also be encoded in a ±1 matrix Φ with n lines and p columns, so that:

Φji =

{
1 if i ∈ Fj ,

−1 otherwise.
j = 1, . . . , n and i = 1, . . . , p. (2.10)

It is clear that: (
SΔ

F1
, . . . , SΔ

Fn

)
= ΦS,

where SΔ
Fi

= SFi − SF c
i
. Hence:

E = ΦS + εΔ, (2.11)

where the ε vector defined by εΔ
j = ŜΔ

Fi
− SΔ

Fi
gives the estimation error of ΦS by E. Thus, the problem of

estimating S from E has been casted into linear regression which can be tackled by (2.7).

Input: f (regression function), N (Monte-Carlo sample size), n (number of estimations) and r (regularization
parameter).

Output: Estimation Ŝ of the Sobol’s indices S.

(1) Sample a Φ matrix according to a ±1 symmetric Rademacher distribution.
(2) Deduce from Φ the F1, . . . , Fn subsets using the correspondance (2.10).
(3) Generate a N-sized sample of (Y, Y F1 , . . . , Y Fn).
(4) Use this sample in (2.3), for F = F1, . . . , Fn, to obtain the E vector (2.4).

(5) Solve problem (2.7) to obtain an Ŝ which estimates S.

Algorithm 2: Summary of the method “Randomized Pick-Freeze” (RPF) for Rademacher matrices.

We now consider a different sampling procedure for Φ, which will make it possible to improve on the constants
in (2.9) as it will be stated in (2.13). Specifically, we sample Φ using a symmetric Rademacher distribution:

(Φji)j,i are independent : P (Φji = 1) = P (Φji = −1) =
1
2
· (2.12)

The following theorem is the equivalent of Theorem 2.2 for Rademacher designs.

Theorem 2.8 (�∞ error bound). Suppose that:

(1) ε is a centered Gaussian vector whose covariance matrix has σ2 as largest eigenvalue;

(2) δ =
1

7δ′s
for some real δ′ > 1;

(3) r = Aσ

√
ln p

n
for some A > 2

√
2.

Let:

t =
3
2

(
1 +

16
5(δ′ − 1)

)
r

α = 1 −
(
1 − p1−A2/8

)(
1 − exp

(
−n

49δ2s2

2
+ 2 ln p

))
.

Then, with probability at least 1 − α, any solution Ŝ of (2.7) satisfies:

max
i=1,...,p

|Ŝi − Si| ≤ t.
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Figure 1. LASSO convergence path for a Bernoulli design.

Proof. A proof can be found in Appendix A.2. �

Remark 2.9. For the probability above to be greater than zero, it is necessary to have:

n ≥ Cs2 ln p (2.13)

for some constant C > 0.

Remark 2.10. Support recovery property (Cor. 2.6) also holds in this context.

Remark 2.11. We see that there are many simulation parameters (n, N, r, A, δ) to choose. The point is to
balance between the precision of the obtained confidence interval (t) and the level of this confidence interval
(α). The “adequate” choice heavily depends on the case at hand (the f function, which dictates σ, s, and p), as
well as the precision/confidence requirements, and the constraints on computational budget (dictated by N, n,
and the run time for f). The adequate tuning of these parameters should be left to the practitioner, which
will typically prescribe t and α, find a rough estimate of σ and s, and then find n, N, δ, r and A to satisfy its
prescriptions on t and alpha.

2.3. Numerical experiments

2.3.1. LASSO convergence paths

In this section, we perform a numerical test of the “Randomized Pick–Freeze” estimation procedure for
Bernoulli and Rademacher matrices, summarized respectively on the 5th and 7th page. We use the following
model:

Y = f(X1, . . . , X300) = X2
1 + 4X1 + 4X2 + 10X3,

hence p = 300 and s = 3, with (Xi)i=1,...,300 iid uniform on [0, 1]. It is easy to see that, in this model, we have
S3 > S1 > S2 > 0 and Si = 0 for all i > 3; more precisely, S1 = 0.18, S2 = 0.11, S3 = 0.71. The tests are
performed by using n = 30. The obtained LASSO regularization paths (ie., the estimated indices for different
choices of the penalization parameter r) are plotted in Figure 1 (for Bernoulli design matrix with parameter
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Figure 2. LASSO convergence path for a Rademacher design.

μ = 1/2) and Figure 2 (for Rademacher design matrix). The Monte-Carlo sample size used are N = 3000 and
N = 2000, respectively for Bernoulli and Rademacher designs. This difference in sample sizes accounts for the
increase in the number of required evaluations of the f function when a Rademacher design is used (as, in this
case, each replication is a difference of two pick-freeze estimators on the same design).

We observe that the Rademacher design seems to perform better (as LASSO convergence is faster) than the
Bernoulli design, in accordance with the remarks made in the beginning of Section 3. Both designs perfectly
recover the active variables (the support of S), as well as the ordering of indices. Note that the proposed method
requires only 30 × 2 × 3000 = 180 000 evaluations of the f function to estimate the 300 Sobol indices, while a
classic one-by-one pick-freeze estimation with the same Monte-Carlo sample size would require 3000×(300+ 1) =
903 000 evaluations of f .

2.3.2. Second illustration

We now take a second example, taken from [11]:

Y = 5X1 + 3(2X2 − 1)2 + 4
sin(2πX3)

2 − sin(2πX3)
+ 6(0.1 sin(2πX4) + 0.2 cos(2πX4)

+ 0.3 sin(2πX4)2 + 0.4 cos(2πX4)3 + 0.5 sin(2πX4)3

with p = 1000, and Xi uniform on [0; 1].
The true values of the Sobol’s indices are:

S1 = 0.13, S2 = 0.05, S3 = 0.21, S4 = 0.6.

We take: (for Bernoulli design) n = 30 and N = 400, and (for Rademacher design) n = 30, N = 266. The
resulting LASSO convergence paths are given in Figures 3 (for Bernoulli design) and 4 (for Rademacher design).

The results are, again, quite satisfactory, from both qualitative (support recovery, ordering of indices) and
quantitative (the estimated values are close to the true values) points of view. This computation required 24 000
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Figure 3. LASSO convergence path for a Rademacher design.

calls to the f function. In [11], the authors have performed support recovery with 400 calls to f , using spline-
based nonparametric independence screening (NIS) methods. Hence, our method require a little more runs in this
case but, one should keep in mind that our method does not assume that the f function has some regularity (i.e.,
approachability by splines). Besides, the overall computational time needed to produce the support estimation is
much smaller for our method. This can be explained by the fact that we only require a single LASSO to produce
our estimators, in contrast to the NIS methods [11] which may have a greater complexity. We also note that our
method does not only perform support recovery, it also gives a robust quantification of the importance of each
input variable. To finish, we mention that, if the f function is regular and only a small sample of evaluations of
f is available, it is still possible to use our estimation method using a large sample of evaluations of a smoothed
version of f (“metamodel”), estimated with a COSSO method from a small sample of evaluations of f .

2.3.3. Illustration of �∞ error bounds

We now present a synthetic example which shows the performance of the Rademacher RPF algorithm, used
with Theorem 2.8 and the support recovery corollary.

Suppose that we work on a model with p = 30 000 inputs, with only s = 3 of them have a nonzero Sobol’s
index. We postulate that all the Ŝi estimators, as well as the ŜΔ

F have standard Gaussian distribution. By using
N = 106 and n = 100 in Theorem 2.8, we get that the t error bound given in this theorem is t = 0.03, with
probability greater than 1−α = 95%. Hence, by doing calling 3Nn = 3×108 to the f function, one can correctly
identify parameters whose Sobol’s indices are greater than 0.03.

On the other hand, when using classical one-by-one Sobol index estimation, one has to perform p = 30 000
independent estimations of Sobol index confidence intervals, at level 1–0.951/30000 = 1.71 × 10−6 (by using
ÅǎidÃa̧k correction). From the quantiles of the Gaussian distribution, the length of these intervals is 9.568/

√
N .

Hence, getting confidence intervals of width 0.03 require N ′ = (9.568/0.03)2 ≈ 101 720 sample size. Hence, the
total cost for this method is 2N ′(p + 1) = 6 103 200 000 ≈ 61 × 108 calls to the f function.



RANDOMIZED PICK-FREEZE FOR SPARSE SOBOL INDICES ESTIMATION IN HIGH DIMENSION 735

* * * * * * * ** * ***

*
*

*
*** ******* *******************************

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

|beta|/max|beta|

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

* * * * *

*
* **

* *** * * * *** ******* *******************************

*

*

* * *

*
* ** * ***

*
*

*
*** ******* *******************************



* * * * * ** * ***
* *

* *** ******* ******************************** * * * * * * ** * *** * * * *** ******* ******************************** * * * * * * ** * *** * * * *** ******* ******************************** * * * * * * ** * *** * * * *** ******* ******************************** * * * *
* * ** * ***

* *
* *** ******* ******************************** * * * * * * ** * *** * * * *** ******* ******************************** * * * * * * ** * *** * * * *** ******* ******************************** * * * * * * ** * *** * * * *** ******* ******************************** * * * * * * ** * *** * * * *** ******* ******************************** * * * * * * ** * *** * * * *** ******* *******************************

LASSO

12
2

1
3

0 1 2 5 6 7 9 13 15 18 26 46

Figure 4. LASSO convergence path for a Bernoulli design.

3. Breaking the square-root bottleneck

3.1. Relaxation of the mutual incoherence property

In the beginning of this paper, we have showed results that are limited by the constraint n ≥ Cs2 log p for
some constant C. This limitation is due to the use of the mutual incoherence property in the proofs, which is
heuristically bounded by Welch’s bound [31]. We now present a new approach, based on Universal Distortion
Property [8] and a relaxed version of the coherence which enables to break this “bottleneck” for a large set of
random design matrices encompassing Rademacher designs.

Theorem 3.1 (Exact support recovery with Thresholded-LASSO). Assume that for all γ ∈ �p, for all T ⊆
{1, . . . , p} such that |T | ≤ s,

‖γT ‖1 ≤ ρ
√

s ‖Φγ‖2 + κ ‖γ‖1 , (3.1)

where ρ > 0 and 1/2 > κ > 0. Moreover, assume that:

max
1≤k �=l≤p

1
n
|

n∑
j=1

Φj,kΦj,l| ≤ θ1 and ∀i,
1
n
‖Φi‖2

2≥ θ2, (3.2)

where Φi denotes the columns of Φ. Let r0 > 0 and suppose that the regularizing parameter r of the convex
program (2.7) enjoys:

r >
r0

1 − 2κ
·

Then, on the event {(1/n)‖Φ�ε‖∞≤ r0}, any solution Ŝ to (2.7) satisfies:

‖Ŝ − S‖∞≤ 1
θ2

[
1 +

r0

r
+

2nθ1ρ
2s

1 − (r0/r) − 2κ

]
r.
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Proof. The first order optimality conditions of the convex program (2.7) shows that there exists τ ∈ �p such
that ‖τ‖∞≤ 1 and:

1
n

Φ�(E − ΦŜ) = rτ.

Set Δ = Ŝ − S and Ψ = (1/n)Φ�Φ. We assume that (1/n)‖Φ�ε‖∞≤ r0. It holds:

‖ΨΔ‖∞≤ r + r0. (3.3)

Moreover, Lemma B.2 shows that:

‖Δ‖1≤ 2nrρ2s

1 − r0/r − 2κ
· (3.4)

Since each entry in the matrix Ψ − Diag(‖Φ1‖2
2/n, . . . , ‖Φp‖2

2/n) is less than θ1, we deduce that:

θ2‖Δ‖∞ ≤ ‖ΨΔ‖∞+‖(Ψ − Diag(‖Φ1‖2
2/n, . . . , ‖Φp‖2

2/n))Δ‖∞,

≤ r + r0 + θ1‖Δ‖1,

≤
[
1 +

r0

r
+

2nθ1ρ
2s

1 − r0/r − 2κ

]
r,

using (3.3) and (3.4). �

Remark 3.2. Observe that (3.1) is the Universal Distortion Property (UDP) appearing in the article [8]. This
property is the weakest property to obtain oracle inequalities with LASSO, see [8]. In particular, Restricted
Isometry Property (RIP) [5], Restricted Eigenvalue Condition (REC) [2], Compatibility Condition (CC) [30], or
Hs,1 condition [17] imply UDP. Essentially, this shows that all random matrices considered in high-dimensional
statistics fit the condition (3.1).

Furthermore, Condition (3.2) is a relaxed version of the mutual incoherence property [9] that requires:

max
1≤k �=l≤p

∣∣∣∣∣∣
n∑

j=1

Φj,kΦj,l

∣∣∣∣∣∣ ≤ 1
2s− 1

min
i=1,...,p

‖Φi‖2
2,

where Φi denotes the columns of Φ. Using Welch’s bound [31], one can prove that this condition implies n ≥
Cs2 log p for some constant C > 0. Note that Theorem 3.1 overcomes this difficulty allowing larger upper bounds

on the correlations max
1≤k �=l≤p

|
n∑

j=1

Φj,kΦj,l|. As done in the next section, this result allows to derive support recovery

guarantees from O(sα log(p)) observations for any value 1 ≤ α ≤ 2.

3.2. Rademacher designs

In this section we focus on Rademacher designs defined by (2.12), namely (Φji)j,i are independent and for
all i, j, it holds �(Φji = ±1) = 1/2.

Theorem 3.3 (Exact recovery with Rademacher designs). There exists universal constants C1, C2, C3 > 0 such
that the following holds. Let c > 1 and Φ ∈ {±1}n×p a Rademacher matrix drawn according to (2.12) with:

• n ≥ n0 := C1s log(C2p);
• s ≥ 6(2 + c)/C1;
• ε ∼ N (0, Σn) and the covariance diagonal entries enjoy Σi,i ≤ σ2.
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Let Ŝ be any solution to (2.7) with regularizing parameter:

r ≥ r1 := 45 σ

[
c log p

n

]1/2

,

Then, with a probability greater than 1 − 3p−c − 2 exp(−C3n),∥∥∥Ŝ − S
∥∥∥
∞

≤ σ

√
n0

n

[
r

r1

] [
C′

1 +
C′

2√
s

]√
s, (3.5)

where C′
1 = 35 869(c(2 + c))1/2/C1 and C′

2 = 46.31c1/2/C
1/2
1 .

Proof.
• Invoke Lemma B.5 to get that:

max
1≤k �=l≤p

1
n

∣∣∣∣∣∣
n∑

j=1

Φj,kΦj,l

∣∣∣∣∣∣ ≤
[
(2 + c)8

3C1

]1/2 1√
s
,

with probability greater than 1 − 2p−c.
• Set r0 := σ(2c log p/n)1/2 and Zi = (1/n)Φ�ε. Observe that Zi is centered Gaussian random variable with

variance less than σ2/n. Taking union bounds, it holds:

�[(1/n)‖Φ�ε‖∞> r0] ≤
p∑

i=1

�[|Zi|>
√

2c
√

log p σ/
√

n] ≤ p1−c,

using ‖Φi‖2
2= n and the fact that, for

√
2c
√

log p ≥
√

2 log 2, we have:

�[|N (0, 1)|>
√

2c
√

log p] ≤ 1√
π log 2

exp(−c log p) ≤ p−c.

• From Lemma B.3 and Lemma B.4 with δ = 9/50 and κ = 4/9, it holds that, with a probability greater than
1 − 2 exp(−C3n), for all γ ∈ �p and for T ⊆ {1, . . . , p} such that |T | ≤ s,

‖γT ‖1 ≤ 4.4128
( s

n

)1/2

‖Φγ‖2 +
4
9
‖γ‖1 .

Observe that C1 = 5/(c1δ
2), C2 = c2/δ2 and C3 = c3C1 where c1, c2, c3 are universal constants appearing

in Lemma B.3 and δ = 9/50.
• Invoke Theorem 3.1 with parameters ρ = 4.4128/

√
n, κ = 4/9, θ2 = 1 and θ1 = ((2 + c)8/(3C1s))1/2, to get

that for all regularizing parameter r ≥ r1 := 31.74r0,

‖Ŝ − S‖∞≤
(

1.0316 + 799
(

2 + c

C1

)1/2 √
s

)
r,

on the event {(1/n)‖Φ�ε‖∞≤ r0}.
�

Remark 3.4. Observe that (3.5) reads:

‖Ŝ − S‖∞≤
[

r

r1

] [
C′

1 +
C′

2√
s

]
σ

√
C1s2 log(C2p)

n
,

where C1, C2, C
′
1, C

′
2 > 0 are constants. It shows that, for all α > 0, Thresholded-LASSO exactly recovers the true

support if the non-zero coefficients are above a threshold that is proportional to σs
1−α

2 from n = O(s1+α log p)
observations. Hence, we have tackled the regime 0 < α < 1 where the elementary analysis of Theorem 2.8 fails
to be applicable.
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4. Conclusions

We have presented a new and performant method for estimating Sobol’s indices in high-dimensional additive
models. We have shown that this method can lead to very good results in terms of computational costs. Besides,
the error analysis of our algorithm led us to propose the results in Section 3, which are also of interest outside
of the Sobol’s indices context, and which gives support recovery property for thresholded LASSO that are, to
our best knowledge, greatly improving the results of the literature.

Appendix A. Proof of the theorems

A.1. Proof of Theorem 2.2

We capitalize on [3,19,32] to prove sup-norm error bound when the design matrix has Bernoulli distribution.

Step 1: Rescaling.

We rewrite (2.6) as Ẽ = Φ̃S + ε̃ where:

Ẽ =
1√
μ

E, Φ̃ =
1√
μ

Φ, ε̃ =
1√
μ

ε.

Note Ŝ satisfies:
Ŝ ∈ argmin

U∈�p

{ 1
n

∥∥∥Ẽ − Φ̃U
∥∥∥2

2
+ 2r̃ ‖U‖1}

with:

r̃ =
r

μ
= Aσ

√
1 + δ

μ

√
ln p

n
· (A.1)

Step 2: Expectation and concentration.

We define:
Ψ =

1
n

Φ̃T Φ̃ =
1

nμ
ΦT Φ.

Thanks to the rescaling above, we have, for all i = 1, . . . , p:

�(Ψii) =
1
n

n∑
k=1

�

(
Φ̃2

ki

)
= 1,

and, for all j = 1, . . . , p, j �= i:

�(Ψij) =
1
n

n∑
k=1

�

(
Φ̃kiΦ̃kj

)
= μ.

Besides, Hoeffding’s inequality [15] gives that for all i = 1, . . . , p and any δ > 0,

� (|Ψii − 1| ≥ δ) = �

(∣∣∣∣∣ 1n
n∑

k=1

(Φ2
ki − μ)

∣∣∣∣∣ ≥ δμ

)
≤ 2 exp(−2nδ2μ2),

and, similarly, for any j �= i,
� (|Ψij − μ| ≥ δ) ≤ 2 exp

(−2nδ2μ2
)
.

Thus, by union bound:
�( max

i=1,...,p
|Ψii − 1| ≥ δ) ≤ 2 exp

(−2nδ2μ2 + ln p
)
,
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and:

�(max
j �=i

|Ψij − μ| ≥ δ) ≤ 2 exp
(
−2nδ2μ2 + ln

p(p − 1)
2

)
,

≤ exp
(−2nδ2μ2 + 2 ln p

)
.

Step 3: Noise control.

We proceed as in the proof of (Lem. 1 of [19]). We define, for i = 1, . . . , p:

Zi =
1
n

n∑
j=1

Φ̃jiε̃j =
1
n

(
Φ̃T ε̃

)
i
.

We define the following event:

B =
{

max
i=1,...,p

|Ψii − 1| ≤ δ

}
.

For a given Φ, we denote by Σ = Σ(Φ) the covariance matrix of ε, hence the covariance matrix of ε̃ is Σ/μ.
Note that, as a function of Φ, Σ is also a random variable. We also denote by �arZi the variance of Zi for a
fixed Φ, which is also a Φ-mesurable random variable. Conditionally on B, we have:

�arZi =
1
n2
�ar

[(
Φ̃T ε̃

)
i

]
=

1
μn2

eT
i

(
Φ̃T ΣΦ̃

)
ei where (ei)k =

{
1 if i = k
0 else

=
1

μn2
(Φ̃ei)T Σ(Φ̃ei)

≤ 1
μn2

σ2
∥∥∥Φ̃ei

∥∥∥2

2

=
1

nμ
σ2eT

i Ψei

≤ 1
nμ

σ2(1 + δ) as B holds.

Now consider the following event:

A =
p⋂

i=1

{
|Zi| ≤ r̃

2

}
.

We have:
�(A ∩ B) = �(A|B)�(B).

From union bound and standard results on Gaussian tails, we get:

�(A|B) ≥ 1 − p exp

(
− nμ

2σ2(1 + δ)

(
r̃

2

)2
)

≥ 1 − p1−A2
8

by using (A.1). Hence, Step 2 gives:

�(A ∩ B) ≥
(
1 − p1−A2/8

) (
1 − 2 exp

(−2nδ2μ2 + ln p
))

.
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Remark A.1. following Remark 2.5 (given after the statement of the proven theorem), one can precisely
account for the non-gaussianity of the ε noise by subtracting a correction term to minor �(A|B), by using the
Berry–Esseen’s theorem for the Ŝ estimator given in [13].

Now suppose that A∩ B is realized. We have:

1
n

∥∥∥Φ̃T ε̃
∥∥∥
∞

≤ r̃

2
,

where
‖v‖∞ = max |vi|.

Set Δ = S − Ŝ. We have:

‖ΨΔ‖∞ =
1
n

∥∥∥Φ̃T Φ̃Δ
∥∥∥
∞

,

=
1
n

∥∥∥Φ̃T Φ̃S − Φ̃T Φ̃Ŝ
∥∥∥
∞

,

=
1
n

∥∥∥Φ̃T Ẽ − Φ̃T ε̃ − Φ̃T Φ̃Ŝ
∥∥∥
∞

,

≤ 1
n

∥∥∥Φ̃T
(
Ẽ − Φ̃Ŝ

)∥∥∥
∞

+
1
n

∥∥∥Φ̃T ε̃
∥∥∥
∞

.

As the Dantzig constraint: ∥∥∥∥ 1
n

Φ̃T
(
Ẽ − Φ̃Ŝ

)∥∥∥∥
∞

≤ r̃

holds, see [19], we have:

‖ΨΔ‖∞ ≤ 3r̃

2
· (A.2)

Step 4: Control of ||Δ||1.
Step 4a. Majoration of ΔT ΨΔ. We have, on the event A ∩ B:∣∣ΔT ΨΔ

∣∣ ≤ ‖ΨΔ‖∞ ‖Δ‖1

≤ 3r̃

2
(‖ΔJ‖1 + ‖ΔJc‖1) ,

by introducing the ΔJ and ΔJc vectors defined by:

(ΔJ)i =

{
Δi if Si �= 0

0 else
(ΔJc)i =

{
0 if Si �= 0

Δi else.

We recall that ‖ΔJc‖1 ≤ 3 ‖ΔJ‖1 (see [19], Lem. 1, (9)). Hence, on A ∩ B,∣∣ΔT ΨΔ
∣∣ ≤ 6r̃ ‖ΔJ‖1 . (A.3)

Step 4b. Minoration of ΔT ΨΔ. Let’s introduce the circulant matrix M :

M =

⎛⎜⎜⎜⎜⎜⎜⎝

1 μ · · · μ

μ 1
. . .

...
...

. . .
. . . μ

μ · · · μ 1

⎞⎟⎟⎟⎟⎟⎟⎠
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whose smallest eigenvalue is 1 − μ (see [14]). Hence:

ΔT ΨΔ = ΔT MΔ + ΔT (Ψ − M)Δ

≥ (1 − μ) ‖Δ‖2
2 − |ΔT (Ψ − M)Δ|

≥ (1 − μ) ‖ΔJ‖2
2 − |ΔT (Ψ − M)Δ|

≥ 1 − μ

s
‖ΔJ‖2

1 − |ΔT (Ψ − M)Δ|,

since ΔJ has s nonzero components. We have:

|ΔT (Ψ − M)Δ| ≤ ‖Δ‖1 ‖(Ψ − M)Δ‖∞ ≤ 4 ‖ΔJ‖1 ‖(Ψ − M)Δ‖∞ . (A.4)

Now define the event:

C =
{

max
j �=i

|Ψij − μ| ≥ δ

}
.

It is clear that, on B ∩ C, all entries of Ψ − M are absolutely bounded by δ. Hence, on B ∩ C,

‖(Ψ − M)Δ‖∞ ≤ δ ‖Δ‖1 ≤ 4δ ‖ΔJ‖1 ,

and, by (A.4):
|ΔT (Ψ − M)Δ| ≤ 16δ ‖ΔJ‖2

1 ,

which gives:

ΔT ΨΔ ≥
(

1 − μ

s
− 16δ

)
‖ΔJ‖2

1 . (A.5)

Step 4c. Majoration of ‖Δ‖1. By using (A.3) and (A.5), we get that on A ∩ B ∩ C:

‖ΔJ‖1 ≤ 6r̃
1−μ

s − 16δ
,

hence:

‖Δ‖1 ≤ 24r̃
1−μ

s − 16δ
· (A.6)

Step 5: Majoration of ‖Δ‖∞.
On A ∩ B ∩ C, we have:

‖Δ‖∞ ≤ ‖ΨΔ‖∞ + ‖ΨΔ − Δ‖∞
≤ 3r̃

2
+ ‖(Ψ − Id)Δ‖∞ by using (A.2)

≤ 3r̃

2
+ (μ + δ) ‖Δ‖1 since each entry in Ψ − Id is less than μ + δ

≤
(

3
2

+
24(μ + δ)
1−μ

s − 16δ

)
r̃ by using (A.6).

To finish, it is easy to see, using Step 2, that �(A ∩ B ∩ C) ≥ 1 − α. �
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A.2. Proof of Theorem 2.8

We rely on the result of [19]. Observe that:

Ψ =
1
n

ΦT Φ.

We have for all j = 1, . . . , p, j �= i:

�(Ψij) =
1
n

n∑
k=1

�(Φ̃kiΦ̃kj) = 0.

Hence, for any δ > 0, Hoeffding’s inequality and union bound give:

�(max
j �=i

|Ψij | ≥ δ) ≤ exp
(
−n

δ2

2
+ 2 ln p

)
.

We also notice that Ψii = 1 for all i. Hence, Assumptions 1 and 2 of (Thm. 1 in [19]) are satisfied with probability
as described in the statement of the theorem.

Appendix B. Support recovery using thresholded-LASSO

B.1. Standard results using UDP

Lemma B.1 (Lem. A.2 in [8]). Let r > r0 > 0 and Ŝ a solution to (2.7) with regularizing parameter r. Set
Δ = Ŝ − S. On the event {(1/n)‖Φ�ε‖∞≤ r0}, it holds that for all T ⊆ {1, . . . , p} such that |T | ≤ s,

1
2r

[
1
2n

‖ΦΔ‖2
2+(r − r0)‖Δ‖1

]
≤ ‖ΔT ‖1+‖ST c‖1. (B.1)

Proof. By optimality in (2.7), we get:

1
2n

‖E − ΦŜ‖2
2+r‖Ŝ‖1≤ 1

2n
‖ε‖2

2+r‖S‖1.

It yields,
1
2n

‖ΦΔ‖2
2−

1
n
〈Φ�ε, Δ〉 + r‖Ŝ‖1≤ r‖S‖1.

Let T ⊆ {1, . . . , p} such that |T | ≤ s. We assume that (1/n)‖Φ�ε‖∞≤ r0. Invoking Hölder’s inequality, we have:

1
2n

‖ΦΔ‖2
2+r‖ŜJc‖1≤ r(‖SJ‖1−‖ŜJ‖1) + r‖SJc‖1+r0‖Δ‖1.

Adding r‖SJc‖1 on both sides, observe that:

1
2n

‖ΦΔ‖2
2+(r − r0)‖ΔJc‖1≤ (r + r0)‖ΔJ‖1+2r‖SJc‖1. (B.2)

Adding (r − r0)‖ΔJ‖1 on both sides, we conclude the proof. �

Lemma B.2 (Thm. 2.1 in [8]). Assume that for all γ ∈ �p, for all T ⊆ {1, . . . , p} such that |T | ≤ s,

‖γT ‖1 ≤ ρ
√

s ‖Φγ‖2 + κ ‖γ‖1 .

where ρ > 0 and 1/2 > κ > 0. Moreover, assume that the regularizing parameter r of the convex program (2.7)
enjoys r > r0/(1 − 2κ). Then, on the event {(1/n)‖Φ�ε‖∞≤ r0}, any solution Ŝ to (2.7) satisfies:

‖Ŝ − S‖1≤ 2rnρ2s

1 − (r0/r) − 2κ
·
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Proof. Assume that (1/n)‖Φ�ε‖∞≤ r0. Using (3.1) and (B.1) with J = T , the support of S, we get:

1
2r

[
1
2n

‖ΦΔ‖2
2+(r − r0)‖Δ‖1

]
≤ ρ

√
s ‖ΦΔ‖2 + κ ‖Δ‖1 ,

where Δ = Ŝ − S. It yields,[
1
2

(
1 − r0

r

)
− κ

]
‖Δ‖1≤ − 1

4rn
‖ΦΔ‖2

2+ρ
√

s ‖ΦΔ‖2 ≤ rnρ2s,

using the fact that the polynomial x �→ −1/(4rn)x2 + ρ
√

sx is not greater than rnρ2s. �

B.2. Rademacher designs

The result and the proof given on the 13th page rely on the following lemmas.

Lemma B.3 (Rademacher designs satisfy RIP). There exists universal constants c1, c2, c3 such that the follow-
ing holds. Let δ ∈ (0, 1) and p, n, s′ > 0 such that:

s′ =
⌊

c1δ
2n

log(c2p/(δ2n))

⌋
,

then, with probability at least 1 − 2 exp(−c3n), a matrix Φ ∈ {±1}n×p drawn according to the Rademacher’s
model (2.12) enjoy the RIP property, namely for all γ ∈ �p such that ‖γ‖0≤ s′,

n(1 − δ)2‖γ‖2
2≤ ‖Φγ‖2

2≤ n(1 + δ)2‖γ‖2
2.

Proof. Numerous authors have proved this result, see Example 2.6.3 and Theorem 2.6.5 in [7] for instance. �

Lemma B.4 (Rademacher designs satisfy UDP). There exists universal constants c1, c2, c3 such that the fol-
lowing holds. Let δ ∈ (0,

√
2 − 1) and s > 0 such that:

5s ≤ s′ :=
⌊

c1δ
2n

log(c2p/(δ2n))

⌋
,

then, with probability at least 1 − 2 exp(−c3n), a matrix Φ ∈ {±1}n×p drawn according to the Rademacher
model (2.12) enjoy for all γ ∈ �p and for all T ⊆ {1, . . . , p} such that |T | ≤ s,

‖γT ‖1 ≤ ρ
√

s ‖Φγ‖2 + κ ‖γ‖1 .

where:

• 1/2 > κ >
(
1 + 2((1 − δ)/(1 + δ))

1
2

)−1

,

• √
nρ =

(√
1 − δ + (κ0−1)/(2κ0)

√
1 + δ

)−1

.

Proof. The proof follows from Lemma B.3 and Proposition 3.1 in [8]. �

Lemma B.5. Let c, C1 > 0 and p, n, s > 0 such that n ≥ C1s log p and s ≥ 3(2 + c)/C1. Then, with probability
greater than 1 − 2p−c, it holds for all k �= l ∈ {1, . . . , p},

1
n

∣∣∣∣∣
n∑

i=1

Φi,kΦi,l

∣∣∣∣∣ ≤
[
(2 + c)8

3C1

]1/2 1√
s
.
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Proof. Let k �= l ∈ {1, . . . , p}. Set Xi = Φi,kΦi,l and observe that Xi are independent Rademacher random
variables. From Bernstein’s inequality, it holds for all 0 < t < 1,

�

(∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−3n

8
t2
)
·

Set t = ((2 + c)8/(3sC1))1/2 and observe #{k �= l} ≤ exp(2 log p). �
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[8] Y. de Castro, A remark on the lasso and the Dantzig selector. Stat. Probab. Lett. (2012).

[9] D.L. Donoho, M. Elad and V.N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise.
Inf. Theory IEEE Trans. 52 (2006) 6–18.

[10] B. Efron, T. Hastie, I. Johnstone and R.J. Tibshirani, Least angle regression. Ann. Stat. 32 (2004) 407–499.

[11] Jianqing Fan, Yang Feng and Rui Song, Nonparametric independence screening in sparse ultra-high-dimensional additive
models. J. Am. Stat. Assoc. 106 (2011).

[12] J.-J. Fuchs, On sparse representations in arbitrary redundant bases. Inf. Theory IEEE Trans. 50 (2004) 1341–1344.

[13] F. Gamboa, A. Janon, T. Klein, A. Lagnoux-Renaudie and C. Prieur, Statistical inference for Sobol pick freeze Monte Carlo
method. Preprint arXiv:1303.6447 (2013).

[14] R. Gray, Toeplitz and Circulant Matrices: A Review. Now Publishers Inc. (2006).

[15] W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables. J. Am. Statist. Assoc. 58 (1963) 13–30.

[16] A. Janon, T. Klein, A. Lagnoux, M. Nodet and C. Prieur, Asymptotic normality and efficiency of two Sobol index estimators.
Preprint available at http://hal.inria.fr/hal-00665048/en (2012).

[17] A. Juditsky and A. Nemirovski, Accuracy Guarantees for-Recovery. Inf. Theory IEEE Trans. 57 (2011) 7818–7839.

[18] R. Liu and A.B. Owen, Estimating Mean Dimensionality. Department of Statistics, Stanford University (2003).

[19] K. Lounici, Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electron. J. Stat. 2
(2008) 90–102.

[20] H. Monod, C. Naud and D. Makowski, Uncertainty and sensitivity analysis for crop models. In Chap. 4. Working with Dynamic
Crop Models: Evaluation, Analysis, Parameterization, and Applications. Edited by D. Wallach, D. Makowski and J.W. Jones.
Elsevier (2006) 55–99.

[21] M.D. Morris, Factorial sampling plans for preliminary computational experiments. Technometrics 33 (1991) 161–174.

[22] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana and S. Tarantola, Global Sensitivity
Analysis: The Primer. Wiley Online Library (2008).

[23] I.M. Sobol, Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Experiment 1 (1993) 407–414.

[24] I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput.
Simul. 55 (2001) 271–280.

[25] S. Tarantola et al., Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab.
Eng. Syst. Safety 92 (2007) 957–960.

http://arxiv.org/abs/1303.6447
http://hal.inria.fr/hal-00665048/en


RANDOMIZED PICK-FREEZE FOR SPARSE SOBOL INDICES ESTIMATION IN HIGH DIMENSION 745

[26] R.J. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B. Methodological (1996) 267–288.

[27] J.-Y. Tissot and C. Prieur, Bias correction for the estimation of sensitivity indices based on random balance designs. Reliab.
Eng. Syst. Safety 107 (2012) 205–213.

[28] J.-Y. Tissot and C. Prieur, Estimating Sobol’Indices Combining Monte Carlo Estimators and Latin Hypercube Sampling
(2012).

[29] J.A. Tropp, Just relax: Convex programming methods for identifying sparse signals in noise. Inf. Theory IEEE Trans. 52
(2006) 1030–1051.
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