
ESAIM: PS 19 (2015) 293–306 ESAIM: Probability and Statistics
DOI: 10.1051/ps/2014025 www.esaim-ps.org

ORTHOGONAL POLYNOMIALS FOR SEMINONPARAMETRIC
INSTRUMENTAL VARIABLES MODEL ∗

Yevgeniy Kovchegov1 and Neşe Yıldız2

Abstract. We develop an approach that resolves a polynomial basis problem for a class of models
with discrete endogenous covariate, and for a class of econometric models considered in the work of
Newey and Powell [17], where the endogenous covariate is continuous. Suppose X is a d-dimensional
endogenous random variable, Z1 and Z2 are the instrumental variables (vectors), and Z =

(
Z1
Z2

)
. Now,

assume that the conditional distributions of X given Z satisfy the conditions sufficient for solving the
identification problem as in Newey and Powell [17] or as in Proposition 1.1 of the current paper. That
is, for a function π(z) in the image space there is a.s. a unique function g(x, z1) in the domain space
such that

E[g(X,Z1) | Z] = π(Z) Z − a.s.

In this paper, for a class of conditional distributions X|Z, we produce an orthogonal polynomial basis
{Qj(x, z1)}j=0,1,... such that for a.e. Z1 = z1, and for all j ∈ Z

d
+, and a certain μ(Z),

Pj(μ(Z)) = E[Qj(X, Z1) | Z],

where Pj is a polynomial of degree j. This is what we call solving the polynomial basis problem.

Assuming the knowledge of X|Z and an inference of π(z), our approach provides a natural way
of estimating the structural function of interest g(x, z1). Our polynomial basis approach is naturally
extended to Pearson-like and Ord-like families of distributions.
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1. Introduction

In this paper we start with a small step of extending the set of econometric models for which nonparametric
or semiparametric identification of structural functions is guaranteed to hold by showing completeness when the
endogenous covariate is discrete with unbounded support. Note that the case of discrete endogenous covariateX
with unbounded support is not covered by the sufficiency condition given in [17]. Then, using the theory
of differential equations we develop a novel orthogonal polynomial basis approach for a large class of the
distributions given in Theorem 2.2 in [17], and in the case of discrete endogenous covariate X for which the
identification problem is solved in this paper. Our approach is new in economics and provides a natural link
between identification and estimation of structural functions. We also discuss how our polynomial basis results
can be extended to the case when the conditional distribution of X |Z belongs to either the modified Pearson
or modified Ord family.

Experimental data are hard to find in many social sciences. As a result, social scientists often have to devise
statistical methods to recover causal effects of variables (covariates) on outcomes of interest. When the structural
relationship between a dependent variable and the explanatory variables (i.e. g(x, z1)) is parametrically specified
Instrumental variables (IV) method is typically used to get consistent and asymptotically normal estimators
for the finite dimensional vector of parameters, and thus, the structural function of interest3. However the
parametric estimators are not robust to misspecification of the underlying structural relationship, g(x, z1). For
example, in the context of the analysis of consumer behavior recent empirical studies have suggested the need
to allow for a more flexible role for the total budget variable to capture the observed consumer behavior at the
microeconomic level. (See [3] and the references therein.) Failure of robustness of parametric methods raises the
question whether it is possible to extend the instrumental variables estimation to non-parametric framework.
This question was first studied in reference [17]. Thus far, however, the development of theoretical analysis
and empirical implementation of nonparametric instrumental variables methods have been slow. This may have
to do with the fact that identification is very hard to attain in these models. In addition, although there are
some results about convergence rates of nonparametric estimators of the structural function, or on asymptotic
distribution of the structural function evaluated at finitely many values of covariates4 to date the asymptotic
distribution of the estimator for the structural function is still unknown.

In this paper we suggest a semiparametric approach. This suggestion is motivated by the fact that sufficient
conditions for nonparametric identification are closely related to the conditional distribution of the endogenous
covariate given the instruments, which can be estimated non-parametrically since it only depends on observable
quantities. We suggest a way of nonparametrically estimating the structural function while assuming that the
conditional distribution of the endogenous covariate given instruments belongs to a large family for which
identification of the structural function is guaranteed to hold. Ours is not the first paper which suggests taking
a related semiparametric approach to attack this problem. References [10] and [3] both take a semiparametric
approach in analyzing the Engel curve relationship. The semiparametric approach in [10] is different from
the one taken by [3], and is more closely related to the one taken in this paper. In particular, [3] assume
g(X,Z1) = h(X − φ(ZT

1 θ1)) + ZT
1 θ2, with θ1, θ2 as finite dimensional parameters, φ having a known functional

form, and h non-parametric, but leave the distribution of X given Z to be more flexible than in reference [10].
In contrast, [10] leave specification of g more flexible, but assume that the joint distribution of X and Z2

conditional on Z1 is normal.
The Engel curve relationship describes the expansion path for commodity demands as the households budget

increases. In Engel curve analysis Y denotes budget share of the household spent on a subgroup of goods, X
denotes log total expenditure allocated by the household to the subgroup of goods of interest, Z1 are vari-
ables describing other observed characteristics of households, and U represents unobserved heterogeneity across
households. The (log) total expenditure variable, X , is a choice variable in the households allocation of income
across consumption goods and savings. Thus, household’s optimization suggests that X is jointly determined

3 A keyword search for “instrumental variables” in JSTOR returned more than 20 000 entries.
4 See [4, 5, 7, 9, 12].
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with household’s demands for particular goods and is, therefore, likely to be an endogenous regressor, or a
regressor that is related to U , in the estimation of Engel curves. This means that the conditional mean of Y
estimated by nonparametric least squares regression cannot be used to estimate the economically meaningful
structural Engel curve relationship. Fortunately, as argued in [3], household’s allocation model does suggest
exogenous sources of income that will provide suitable instrumental variables for total expenditure in the Engel
curve regression. In particular, log disposable household income is believed to be exogenous because the driving
unobservables like ability are assumed to be independent of the preference orderings which play an important
role in household’s allocation decision and are included in U (see [10]). Consequently, log disposable income is
usually taken as the excluded instrument, Z2. Reference [10] demonstrates that log expenditure and log dispos-
able income variables are both well characterized by joint normality, conditional on other variables describing
household characteristics. Under the assumption that the joint distribution of X and Z2 conditional on Z1 is
normal [10] provide a semiparametric estimator for the structural Engel curve and give convergence rates for
their estimator. In parametric models normality is typically associated with nice behavior, but in a nonparamet-
ric regression with endogenous regressors the situation is very different. Indeed, it is well established that joint
normality can lead to very slow rates of convergence (see [3,8,19]). In contrast to [10] we suggest an estimation
method that is directly related to the information contained in the identification condition and that covers any
conditional distribution of X given Z (not just normal distribution) that belongs to a large family for which
identification of the structural function is known to hold. By exploiting this information our method eliminates
one step of estimation. As a result, we expect estimators that are based on our method will have a faster rate
of convergence. Specifically, the case where the joint distribution of X and Z2 conditional on Z1 is normal as
in [10] fits right into the orthogonal polynomial framework of this paper. This correspondence will be pointed
out in a remark in Section 2.2. The follow-up paper that includes a least square analysis for normal conditional
distributions is being prepared by the authors.

Our approach to choosing the orthogonal polynomials for approximating structural function is semiparametric
and is motivated by the form of the conditional density (either with respect to Lebesgue or counting measure)
of covariates given instruments. Using the form of this density function we can derive a second-order Stein
operator (called Stein–Markov operator in [18]) whose eigenfunctions are orthogonal polynomials (in covariates)
under certain sufficient conditions. This step utilizes the generator approach from Stein’s theory originated in
Barbour [1] and extensively studied in Schoutens [18]. One could use the eigenfunctions of the Stein–Markov
operator to approximate the structural functions of interest in such models. Since the conditional expectations
of these orthogonal basis functions given instruments are known up to a certain function of the instruments
(namely, they are polynomials in μ(Z), which will be defined below), this approach is likely to simplify estimation.
The in-depth information on Stein’s method and Stein operators can be found in [1, 2, 6, 18, 20] and references
therein.

A common way of estimating the structural function, which depends on the endogenous regressor X , starts
with picking a basis, {Qj}∞j=1, for the space the structural function of interest belongs to. Finitely many elements
of this basis is used to approximate the structural function. To estimate the coefficients on the elements of the
basis, both the left hand side, or dependent variable, and the finite linear combination of the basis functions
are first projected on the space defined by the instrument Z, and then the projection of the dependent variable
is regressed onto the linear combination of the projections of basis functions. When this is done, typically, the
choice of basis functions has little to do with the conditional distribution of X |Z, and hence, with the conditions
that ensure identification of the structural function. As a result, the projections of the basis functions on the
instrument are not known analytically, but have to be estimated by non-parametric regression. In this paper, we
propose a method that links the condition for identification of the structural function to the choice of the basis
used to approximate this function in estimation stage. We do this by exploiting the form of the conditional
density of covariates given instruments. As suggested above we propose the use of the eigenfunctions of the
Stein–Markov operator to approximate the structural function. Since the conditional expectations of these
orthogonal basis functions given instruments are known up to a certain function of the instruments, this would
eliminate one step of the estimation of the structural function. It should be stressed, however, even assuming
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the conditional density of covariates given instruments is known up to finite dimensional parameters, does not
imply that the conditional expectations of arbitrary basis functions given instruments are necessarily known
analytically.

The paper is organized as follows. Section 1.1 discusses the identification result for the case of discrete
endogenous covariate X with unbounded support. Section 2 contains the orthogonal polynomial approach for
the basis problem. Finally, Section 3 contains the concluding remarks.

1.1. An identification result

As it will be shown in Section 2.3, our approach to choosing orthogonal basis works for many cases in
which the endogenous variable is discrete and has unbounded support. To be able to talk about such cases we
state an identification result that covers those cases. This theorem as well as Theorem 2.2 of [17] follow from
Theorem 1 on page 32 of [15]. We let X denote the endogenous random variable and Z =

(
Z1
Z2

)
denote the vector

of instrumental variables.

Proposition 1.1. Let X be a random variable, with conditional density (w.r.t. either Lebesgue or counting
measure) of X |Z given by

p(x|Z = z) := p(x|z) = t(z)s(x, z1)
d∏

j=1

[μj(z) −mj ]τj(x,z1) τ(x, z1) ∈ Z
d
+,

where t(z) > 0, s(x, z1) > 0, τ(x, z1) = (τ1(x, z1), . . . , τd(x, z1)) is one-to-one in x, and the support of μ(Z) =
(μ1(Z), . . . , μd(Z)) given Z1 contains a non-trivial open set in R

d, and μj(Z) > mj (Z − a.s.) for each
j = 1, . . . , d. Then

E[g(X,Z1)|Z1, Z2] = 0 Z − a.s. implies g(X,Z1) = 0 (X,Z1) − a.s.

Proof. 5 Note that

p(x|z) = t(z)s(x, z1) exp

[
d∑

i=1

τi(x, z1) log (μi(z) −mi)

]
.

Then letting A(η) = 0, and ηi = log (μi(z) −mi), we see that the result follows from [16]. See also [15]. �

The above theorem extends Theorem 2.2 in [17], where it was shown that if with probability one conditional
on Z, the distribution of X is absolutely continuous w.r.t. Lebesgue measure, and its conditional density is
given by

fX|Z(x|z) = t(z)s(x, z1) exp [μ(z) · τ(x, z1)], (1.1)

where t(z) > 0, s(x, z1) > 0, τ(x, z1) is one-to-one in x, and the support of μ(Z) given Z1 contains a non-trivial
open set, then for each g(x, z1) with finite expectation E[g(X,Z1)|Z] = 0 (Z−a.s.) implies that g(X,Z1) = 0
(X,Z1) − a.s.

The condition requiring the support of μ(Z) given Z1 to contain a nontrivial open set in R
d in both our

Theorems 1.1 and 2.2 in [17] can be weakened to requiring that the support of μ(Z) given Z1 be a countable
set that is dense in a nontrivial open set in R

d.

5 For the case in which X is discrete an alternative proof can be found in [14].
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2. Polynomial basis results

Once again, let X be a d-dimensional endogenous random variable, Z1 and Z2 be the instrumental variables

(vectors), and Z =
(
Z1

Z2

)
. Now, assume that the conditional distributions of X given Z satisfy the conditions

sufficient for solving the identification problem as in Theorem 2.2 of [17] or as in Proposition 1.1 of the current
paper. Then, for a function π(z) in the image space there is a unique function g(x, z1) in the domain space such
that

E[g(X,Z1) | Z] = π(Z) Z a.s.

In this section we will use Stein–Markov operators to solve the polynomial basis problem for a class of condi-
tional distributions X |Z. Specifically, we will develop an approach to finding an orthogonal polynomial basis
{Qj(x, z1)}j=0,1,... such that for a.e. Z1 = z1, and for all j ∈ Z

d
+, and a function μ(Z) defined in Section 1,

Pj(μ(Z)) = E[Qj(X,Z1) | Z],

where Pj is a polynomial of degree j. See [2, 6, 18, 20] for comprehensive studies and reviews of Stein–Markov
operators and Stein’s method. In the examples with no instrumental variable Z1, i.e. Z = Z2, polynomials
Qj(x, z1) will be denoted by Qj(x).

2.1. Sturm–Liouville equations and Stein operators

Let open set Ω(z) ∈ R
d be the support of X given Z = z, and let ∂Ω(z) denote the boundary of Ω(z).

Consider a continuous conditional density function fX|Z(x|z) = s(x, z1)t(z)eμ(z)T τ(x,z1) as in Theorem 2.2

in [17] with x = (x1, . . . , xd)T and μ(z) =
(
μ1(z), . . . , μd(z)

)T in R
d, and t(z) > 0. Assume that for a.e. Z1 = z1,

τ(x, z1) =
(
τ1(x, z1), . . . , τd(x, z1)

)T is a twice differentiable invertible one-to-one function from Ω(z) ⊆ R
d to

R
d with nonzero partial derivatives, and s(x, z1) : R

d → R is a differentiable function in x. Next denote by ∇x,τ

the following first order linear operator

∇x,τf(x) :=

(
∂

∂x1

[
f(x)

∂τ1(x,z1)
∂x1

]
, . . . ,

∂

∂xd

[
f(x)

∂τd(x,z1)
∂xd

])
·

We differentiate fX|Z(x|z) to obtain

∇x,τfX|Z(x|z) =
∇x,τs(x, z1)
s(x, z1)

fX|Z(x|z) + μ(Z)T fX|Z(x|z) for all x ∈ Ω(z).

The following statement holds for almost every Z = z. For a function Q(x, z1) that is differentiable in x and
satisfies Q(x, z1)s(x, z1)

/
∂τi(x,z1)

∂xi
= 0 for each i and each x ∈ ∂Ω(z)6, we integrate by parts to obtain

E[AQ(X,Z1)|Z] = −μ(Z)TE[Q(X,Z1)|Z] Z a.s., (2.1)

where

AQ(x, z1) =
1

s(x, z1)
∇x,τ [s(x, z1)Q(x, z1)] =

(∇x,τs(x, z1)
)
Q(x, z1)

s(x, z1)
+

d∑
i=1

∂Q(x,z1)
∂xi

∂τi(x,z1)
∂xi

· (2.2)

Now, for a given z, let L2(Rd, s(x, z1)) denote the space of Lebesgue measurable u(x, z1) in x such that∫
Ω(z)

u2(x, z1)s(x, z1)dx <∞, with the inner product

〈
u, v

〉
s

:=
∫

Ω(z)

u(x, z1)v(x, z1)s(x, z1)dx.

6 If ∂Ω(z) contains a singularity or a point at infinity, this statement should be taken to hold in the limit.
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Next define the following Sturm–Liouville operator:

AQ :=
1

s(x, z1)
∇x,τ

[
s(x, z1)∇xQ(x, z1))

]
=

∇x,τs(x, z1) · ∇xQ(x, z1)
s(x, z1)

+
d∑

i=1

1
∂τi(x,z1)

∂xi

∂2Q(x, z1)
∂x2

i

,

where ∇x :=
(

∂
∂x1

, . . . , ∂
∂xd

)T

is standard gradient. Here A is a Stein operator for the distribution that has

Lebesgue density equal to s(x,z1)∫
s(x,z1)dx

, and A is the corresponding Stein–Markov operator.

Then, integration by parts shows A is a self-adjoint operator with respect to
〈·, ·〉

s
. Specifically,

〈Au, v〉
s

=〈
u,Av〉

s
provided the following standard boundary conditions

d∑
i=1

∫
∂Ω(z)

[(
∂

∂xi
u(x, z1)

)
v(x, z1) −

(
∂

∂xi
v(x, z1)

)
u(x, z1)

]
s(x, z1)
∂τi(x,z1)

∂xi

dΓ (x) = 0 (2.3)

Z a.s. for all u(x, z1) and v(x, z1) in C2(Rd) ∩ L2(Rd, s(x, z1)) for almost every Z1 = z1. Trivially, the above
boundary conditions (2.3) are satisfied if(

∂

∂xi
u(x, z1)

)
v(x, z1) −

(
∂

∂xi
v(x, z1)

)
u(x, z1) ≡ 0 on ∂Ω(z). (2.4)

In the case of a singularity or a point at infinity on the boundary the above boundary conditions (2.4) will need
to hold in the limit. The eigenvalues λj of A are all real, and the corresponding eigenfunctions Qj(x, z1) solve
the following Sturm–Liouville differential equation

d∑
i=1

s(x, z1)
∂τi(x,z1)

∂xi

∂2Qj(x, z1)
∂x2

i

+
d∑

i=1

∂

∂xi

(
s(x, z1)
∂τi(x,z1)

∂xi

)
∂Qj(x, z1)

∂xi
− λjs(x, z1)Qj(x, z1) = 0. (2.5)

These Qj(x, z1) form a basis of L2(Rd, s(x, z1)), orthogonal with respect to
〈·, ·〉

s
.

2.1.1. A special case

Assume that for a.e. Z1 = z1, s(x, z1) ∈ C∞(Rd) w.r.t. variable x, for each nonnegative integer j = (j1, . . . , jd).
Consider a special case when Qj(x, z1) = (−1)j1+···+jd

s(x,z1)
∂j1+···+jd

∂x
j1
1 ...∂x

jd
d

s(x, z1) are the orthogonal eigenfunctions in

L2(Rd, s(x, z1)), then their projections

Pj(Z) := E[Qj(X,Z1)|Z] =
d∏

k=1

μk(Z)jk = μ(Z)j

due to integration by parts under the boundary conditions requiring the corresponding boundary integral to be
zero.

Example: In particular, using the Rodrigues’s formula for the Sturm–Liouville boundary value problem, we
can show that when

s(x, z1) = γ(z1) exp
[
α(z1)

xTx

2
+ β(z1)

]
,

with α(z1) < 0 for each z1, there is a series of eigenvalues λ0, λ1, λ2, . . . that lead to solutions {Qj(x, z1)}∞j=0,

where each Qj(x, z1) = (−1)j1+···+jd

s(x,z1)
∂j1+···+jd

∂x
j1
1 ...∂x

jd
d

s(x, z1) is a multidimensional Hermite-type orthogonal polynomial

basis for L2(Rd, s(x, z1))7.

7 When s(x, z1) is of this form Qj(x, z1) are polynomials. In general equation (2.5) may have solutions for other s(x, z1) that
are not necessarily polynomials.
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2.2. The orthogonal polynomial basis results for continuous X

We assume that d = 1 in this subsection with the exception of Example 2 below. Then

∂fX|Z(x|z)
∂x

=
∂s(x,z1)

∂x

s(x)
fX|Z(x|z) + μ(z)

∂τ(x, z1)
∂x

fX|Z(x|z).

and

AQ(x, z1) =
∂

∂x

(
s(x, z1)Q(x, z1)

∂τ(x,z1)
∂x

)
1

s(x, z1)
=

∂Q(x,z1)
∂x

∂τ(x,z1)
∂x

+
∂s(x,z1)

∂x

s(x, z1)
Q(x, z1)
∂τ(x,z1)

∂x

− Q(x, z1)
∂2τ(x,z1)

∂x2[
∂τ(x,z1)

∂x

]2
as in (2.2). Once again, equation (2.1) is satisfied if Q(x, z1)s(x, z1)

/
∂τ(x,z1)

∂x = 0 on ∂Ω(z) for a.e. Z = z.
Here, for d = 1, Stein–Markov operator is

AQ(x, z1) := A
∂Q(x, z1)

∂x
=

∂2Q(x,z1)
∂x2

∂τ(x,z1)
∂x

+

⎛
⎜⎝ ∂s(x,z1)

∂x

s(x, z1)
1

∂τ(x,z1)
∂x

−
∂2τ(x,z1)

∂x2[
∂τ(x,z1)

∂x

]2
⎞
⎟⎠ ∂Q(x, z1)

∂x
·

We would like to find eigenfunctions Qj and eigenvalues λj of A such that AQj = λjQj . We define

φ(x, z1) := − 1
∂τ(x,z1)

∂x

and ψ(x, z1) := − 1
∂τ(x,z1)

∂x

[
∂s(x,z1)

∂x

s(x, z1)
−

∂2τ(x,z1)
∂x2

∂τ(x,z1)
∂x

]
,

Then Sturm–Liouville differential equation (2.5) can be rewritten as

φ(x, z1)
∂2Q(x, z1)

∂x2
+ ψ(x, z1)

∂Q(x, z1)
∂x

+ λQ(x, z1) = 0. (2.6)

with the boundary conditions (2.4) rewritten as

c1Q(α1(z1), z1) + c2
∂Q(α1(z1), z1)

∂x
= 0 c21 + c22 > 0, (2.7)

d1Q(α2(z1), z1) + d2
∂Q(α2(z1), z1)

∂x
= 0 d2

1 + d2
2 > 0,

where Ω(z) =
(
α1(z1), α2(z1)

)
denotes the support of X conditioned on Z1 = z1. The solution to this Sturm–

Liouville type problem exists when one of the three sufficient conditions listed below is satisfied. See [21]
and [18]8. Moreover, in the cases we list below, the solutions are orthogonal polynomials with respect to the
weight function s(x, z1), and for each j, the corresponding eigenfunction Qj(x, z1) is proportional to

1
s(x, z1)

∂j

∂xj

(
s(x, z1)[φ(x, z1)]j

)
.

HereQ0 is a constant eigenfunction corresponding to λ0 = 0. Finally, iterating equation (2.1) proves the following
important result.

Theorem 2.1. Suppose Qj(x, z1) are an orthogonal polynomial basis Z a.s. Then functions Pj(Z) =
E[Qj(X,Z1)|Z] are jth order polynomials in μ(Z) with its coefficients being functions of Z1.

8 [18] and [21] give results for Hermite, Laguerre and Jacobi polynomials, the other cases are obtained by defining x̃ = ax + b
and applying the results in [18] and [21]. Also note that these conditions are sufficient for the solutions to be polynomials. Solutions
that are not polynomials, but nevertheless form an orthogonal basis might exist under less restrictive conditions.
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Proof. Observe that P0 ≡ Q0 is a constant. Consider j > 0, since fX|Z(x|z) satisfies the unique identification
condition stated in Theorem 2.2 of [17] (that in turn is a Corollary of Thm. 1 of [15]), E[AQj(X,Z1)|Z] =
λjE[Qj(X,Z1)|Z] 	= 0. Therefore λj 	= 0, and since AQj = λjQj,

Pj(Z) = E[Qj(X,Z1)|Z] =
1
λj
E[AQj(X,Z1)|Z] =

1
λj
E

[
A
∂

∂x
Qj(X,Z1)

∣∣∣Z] ,
where ∂

∂xQj(x, z1) =
j−1∑
i=0

aiQi(x, z1) is a polynomial of degree j − 1 in x. Therefore

Pj(Z) =
a0P0

λj
+

j−1∑
i=1

ai

λj
E[AQi(X,Z1) |Z] =

a0P0

λj
− μ(Z)

j−1∑
i=1

ai

λj
Pi(Z)

by (2.1). The statement of the theorem follows by induction. �

Next we list the sufficient conditions for the eigenfunctions {Qj(x, z1)}∞j=0 to be orthogonal polynomials in x that
form a basis in L2(Rd, s(x, z1)), together with the corresponding examples of continuous conditional densities
fX|Z(x|z).
1. Hermite-like polynomials: φ is a non-zero constant, ψ is linear and the leading term of ψ has the

opposite sign of φ. In this case, let φ(x, z1) = c(z1) 	= 0, then τ(x, z1) = − 1
c(z1)

x + d(z1). Then, ψ(x, z1) =

c(z1)
∂s(x,z1)

∂x

s(x,z1)
= a(z1)x+ b(z1). Thus, we have

∂s(x,z1)
∂x

s(x,z1)
= a(z1)

c(z1)
x+ b(z1)

c(z1)
. Let α(z1) := a(z1)/c(z1) and β(z1) :=

b(z1)/c(z1), where α(z1) < 0 ∀z1, since a(z1) and c(z1) always have opposite signs. Solving for s(x, z1) we
get s(x, z1) = γ(z1) exp

(
α(z1)x2/2 + β(z1)x

)
.

Example 1: Given a function σ(z1) 	= 0, and suppose d = 1. Consider

fX|Z(x|z) =
1√

2πσ2(z1)
exp

{
− (x− μ̃(z))2

2σ2(z1)

}
.

Then t(z) = 1√
2πσ2(z1)

exp
{
− z2

2
2σ2(z1)

}
, s(x, z1) = exp

{
− x2

2σ2(z1)

}
, μ(z) = μ̃(z)/σ2(z1), and τ(x, z1) = x.

The orthogonal polynomials Qj(x, z1) are

Qj(x, z1) = (−1)je
x2

2σ2(z1)
dj

dxj
e−

x2

2σ2(z1) ,

Pj(z) = μ̃(z)j

σ2j(z1)
=
[
μ(z)

]j and λj = −j for each j > 1.

Remark 2.2. In [10] it is assumed that(
X
Z2

)
|Z1 = z1 ∼ N

((
μX(z1)
μZ2(z1)

)
,

[
σ2

X(z1) σXZ2(z1)
σXZ2(z1) σ2

Z2
(z1)

])
.

This corresponds to Example 1 above with

μ̃(z1, z2) = μX(z1) +
σXZ2(z1)
σ2

X(z1)
(z2 − μZ2(z1))

and

σ2(z1) =
[
1 − σ2

XZ2
(z1)

σ2
X(z1)σ2

Z2
(z1)

]
σ2

X(z1).
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Example 2: Suppose d > 1. For x = (x1, . . . , xd)T and z2 = (z′1, . . . , z′d)
T , let fX|Z(x|z) =

√
det M

(2π)
d
2

e−
(x−z2)T M(x−z2)

2 , where M = M(z1) is the inverse of the variance-covariance d × d matrix func-

tion with detM(z1) > 0. Then t(z) =
√

detM

(2π)
d
2

e−
zT Mz

2 , s(x, z1) = e−
xT Mx

2 , μ(z) = Mz2, and τ(x, z1) = x.

For each nonnegative integer-valued j = (j1, . . . , jd), the orthogonal polynomial Qj(x, z1) is given by

Qj(x, z1) = (−1)j1+···+jde
xT Mx

2
∂j1+···+jd

∂jxj1
1 . . . ∂xjd

d

e−
xT Mx

2 .

Then

Pj(Z) = E[Qj(X)|Z] = (eT
1 MZ2)j1 . . . (eT

dMZ2)jd =
(
e1 · μ(Z)

)j1
. . .
(
ed · μ(Z)

)jd =
[
μ(z)

]j
,

where e1, . . . , ed denote standard basis vectors, and for any vector w = (w1, w2, . . . , wd)T , wj :=
wj1

1 w
j2
2 . . . wjd

d .

2. Laguerre-like polynomials: φ and ψ are both linear, the roots of φ and ψ are different, and the leading
terms of φ and ψ have the same sign if the root of ψ is less than the root of φ or vice versa.
Suppose φ(x, z1) = a(z1)x+ b(z1) and ψ(x, z1) = c(z1)x+ d(z1) with b(z1)/a(z1) 	= d(z1)/c(z1). Then

∂τ(x, z1)
∂x

=
1

−a(z1)x− b(z1)
,

so

τ(x, z1) =
1

a(z1)
log[a(z1)x+ b(z1)| + C(z1).

Moreover,

ψ(x, z1) = [a(z1)x+ b(z1)]
∂s(x,z1)

∂x

s(x, z1)
+ a(z1) = c(z1)x + d(z1) ⇔

∂s(x,z1)
∂x

s(x, z1)
=
c(z1)x+ d∗(z1)
a(z1)x+ b(z1)

,

where d∗(z1) = d(z1) − a(z1). This means that

s(x, z1) = ρ(z1) exp
{∫

c(z1)x + d∗(z1)
a(z1)x+ b(z1)

dx
}
.

Example: Suppose d = 1. Let δ, r > 0 and a function g : R → R be given, and let Γ (·) denote the gamma
function. Consider

fX|Z(x|z) =
1

Γ (r + z2)
δr+z2

(
x− g(z1)

)r+z2−1
e−δ(x−g(z1)) for x > g(z1),

where Z2 > −r. Then t(z) = 1
Γ (r+z2)

δr+z2 , s(x, z1) = (x− g(z1))r−1e−δ(x−g(z1)), μ(z) = z2, and τ(x, z1) =
log (x− g(z1)), since (x − g(z1))z2 = ez2 log (x−g(z1)). In this case, φ(x, z1) = −(x − g(z1)) and ψ(x, z1) =
δ(x− g(z1)) − r. The orthogonal polynomials Qj(x, z1) are

Qj(x, z1) =
(x− g(z1))−(r−1)eδ(x−g(z1))

j!
dj

dxj

[
(x− g(z1))j+r−1e−δ(x−g(z1))

]
,

for j > 1, Pj(z) = z2(z2 − 1) · · · (z2 − n+ 1), and λj = −δj.
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3. Jacobi-like polynomials: φ is quadratic, ψ is linear, φ has two distinct real roots, the root of ψ lies between
the two roots of φ, and the leading terms of φ and ψ have the same sign.
In this case,

∂τ(x, z1)
∂x

= − 1
(x− r1(z1))(x− r2(z1))

,

with r1 	= r2 and x not equal to either one of them. In this case, however, τ is not one-to-one on x, and the
condition given in Theorem 2.2 of [17] does not hold unless specific support conditions are met.
Solving the last differential equation we get

τ(x, z1) =
1

r1(z1) − r2(z1)
[log |x− r2(z1)| − log |x− r1(z1)|] + c(z1).

Plugging this into the formula for ψ yields

ψ(x, z1) = (x− r1(z1))(x − r2(z1))

[
∂s(x,z1)

∂x

s(x, z1)
+

2x− r1(z1) − r2(z1)
(x− r1(z1))(x − r2(z1))

]
= a(z1)x+ b(z1).

Rearranging terms gives us

∂s(x,z1)
∂x

s(x, z1)
= − 2x− r1(z1) − r2(z1)

(x− r1(z1))(x − r2(z1))

+
1

r1(z1) − r2(z1)

[
a(z1)r1(z1) + b(z1)

x− r1(z1)
− a(z1)r2(z1) + b(z1)

x− r2(z1)

]
=: κ(x, z1).

Let α(x, z1) :=
∫
κ(x, z1)dx. Then

α(x, z1) = − log |(x− r1(z1))(x − r2(z2))| + a(z1)r1(z1) + b(z1)
r1(z1) − r2(z1)

log |x− r1(z1)|

−a(z1)r2(z1) + b(z1)
r1(z1) − r2(z1)

log |x− r2(z1)|,

and
s(x, z1) = ρ(z1) exp [α(x, z1)].

Example: Suppose for simplicity that there is no Z1 (so that z = z2), and

fX|Z(x|z) =
1

B(a+ z, b− z)
xa+z−1(1 − x)b−z−1 for x ∈ (0, 1),

where B(·, ·) denotes the beta function. Suppose the following condition is satisfied:

lim
x→0+

xa+ZQ(x) = lim
x→1−

(1 − x)b−ZQ(x) = 0 Z − a.s. (2.8)

We also assume the support of Z is in (−a, b). Then μ(z) = z, t(z) = B(a,b)
B(a+z,b−z) , and s(x) = 1

B(a,b)x
a−1(1−

x)b−1. Finally, τ(x) = log
(

x
1−x

)
since

(
x

1−x

)z

= exp
[
z log

(
x

1−x

)]
. Then φ(x) = −x(1 − x) and ψ(x) =

(a − b)x − a. The orthogonal polynomial Qj are the scaled Jacobi polynomials and satisfy the following
hypergeometric differential equations of Gauss:

x(1 − x)Q′′
j + (a− (a+ b)x)Q′

j + j(j + a+ b− 1)Qj = 0
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for each degree j = 0, 1, . . . . See Section 4.21 of [21], and [22]. These scaled Jacobi polynomials can be
expressed with the hypergeometric functions

Qj(x) := P
(a−1,b−1)
j (1 − 2x) =

(α)j

j!
· 2F1(−j, j + a+ b− 1; a;x),

where (α)j := α(α+1) · · · (α+ j− 1), and for c /∈ Z−, 2F1(a, b; c;x) :=
∑∞

j=0
(a)j(b)jxj

(c)jj! . Note that these Qj’s
satisfy equation (2.8). Moreover, the eigenvalues are λj = −j(j + a+ b− 1) and for j > 1,

Pj(Z) = E[Qj(X)|Z] = − Z

λj
E[Q′

j(X)|Z].

2.3. The orthogonal polynomial basis results for discrete X

Here we show that the orthogonal polynomial basis results of the previous section go through when X
is discrete and satisfies the conditions in Theorem 1.1. Suppose for simplicity X is one-dimensional with its
conditional distribution given by

P (X = x|Z = z) := p(x|z) = t(z)s(x, z1)[μ(z) −m]x (2.9)

for
x ∈ a+ Z+ = {a, a+ 1, a+ 2, . . .},

where μ(Z) > m a.s., and a given −∞ ≤ a <∞.
For a function h, define respectively the backwards and forwards difference operators as

∇h(x) := h(x) − h(x− 1),

Δh(x) := h(x+ 1) − h(x).

Let Ah(x, z1) := s(x−1,z1)
s(x,z1)

∇h(x, z1) −
[
m+ s(x−1,z1)

s(x,z1)

]
h(x, z1), and let s(a− 1, z1) = 0 for almost every Z = z.

Lemma 2.3. Suppose g is such that E[g(X,Z1)] <∞. Then

E[Ag(X,Z1)|Z] = −μ(Z)E[g(X,Z1)|Z] (Z − a.s.)

Proof.

E[Ag(X,Z1)|Z] =
∑

x∈a+Z+

s(x− 1, Z1)
s(x, Z1)

[g(x, Z1) − g(x− 1, Z1)]t(Z)s(x, Z1)[μ(Z) −m]x

−
∑

x∈a+Z+

[
m+

s(x− 1, Z1)
s(x, Z1)

]
g(x, Z1)t(Z)s(x, Z1)[μ(Z) −m]x

= [m− μ(Z)]
∑

x∈a+Z+

g(x− 1, Z1)t(Z)s(x− 1, Z1)[μ(Z) −m]x−1

−m
∑

x∈a+Z+

g(x, Z1)t(Z)s(x, Z1)[μ(Z) −m]x = −μ(Z)E[g(X,Z1|Z]. �

Note that the result holds when the support of p(x|z) = P (x = x|Z = z) is

a− Z+ = {. . . , a− 2, a− 1, a}

with −∞ < a <∞, Ah(x, z1) := s(x+1,z1)
s(x,z1)

Δh(x, z1)−
[
m+ s(x+1,z1)

s(x,z1)

]
h(x, z1), and s(a+ 1, z1) = 0 for almost

every Z = z.
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From the above lemma we see that equation (2.1) holds, and iterating on that equation yields

E[Akg(X)|Z] = (−μ(Z))kE[g(X)|Z]. (2.10)

The corresponding Stein–Markov operator A is defined as Ah = AΔh. The eigenfunctions of A are orthogonal
polynomials Qj such that

AQj(x, z1) = λjQj(x, z1).

See [18, 21]. Then by (2.1) and (2.10) we have

λjE[Qj(X,Z1)|Z] = E[AΔQj(X)|Z] = −μ(Z)E[ΔQj(X,Z1)|Z],

so that
E[Qj(X,Z1)|Z] =

−μ(Z)
λj

E[ΔQj(X,Z1)|Z]

for j > 1. Thus, we know recursively that Pj(Z) := E[Qj(X,Z1)|Z] is a j-th degree polynomial in μ(Z), as in
Theorem 2.1 of the preceding subsection.

We now present the following specific examples.

1. Charlier polynomials: Suppose there is no Z1, and X |Z has a Poisson distribution with density p(x|z) =
e−(m̃0+z)[m̃0+z]x

x! = e−z e−m̃0m̃x
0

x!

[
1 + z

m̃0

]x

, for x ∈ N, so that t(z) = e−z, s(x) = e−m̃0m̃x
0

x! , m0 = 1, and
μ(z) = z

m̃o
. Then Ah(x) = h(x)− x

m̃0
h(x− 1) is the Stein operator. The eigenfunctions of the Stein–Markov

operator are the Charlier polynomials Qj(x) = Cj(x; m̃0)(x) =
∑j

r=0

(
j
r

)
(−1)j−rm̃−r

0 x(x− 1) . . . (x− r+ 1)

which are orthogonal w.r.t. Poisson–Charlier weight measure ρ(x) := e−m̃0m̃x
0

x!

∑∞
k=0 δk(x), where δk(x) equals

1 if k = x, and 0 otherwise. See [18]. Finally,

Pj(Z) = E[Qj(X)|Z] =
j∑

r=0

∞∑
x=r

e−(m̃0+Z) (m̃0 + Z)x

(x− r)!

(
j

r

)
(−1)j−rm̃−r

0 =
Zj

m̃j
0

.

2. Meixner polynomials: Suppose there is no Z1, and for x ∈ N and α an integer greater than or equal to 1,

p(x|z) =
(
x+α−1

x

)
pα[1 − p+ μ(z)]xt(z), where t(z) =

[∑∞
x=0

Γ (x+α)
x!Γ (α) p

α[1 − p+ μ(z)]x
]−1

. The above lemma

applies with s(x) =
(
x+α−1

x

)
pα, m0 = 1− p. Then Ah(x) = (1− p)h(x)− x

x+αh(x− 1) is the Stein operator.
The eigenfunctions of the Stein–Markov operator are the Meixner polynomials Qj(x) = Mj(x;α, p)(x) =∑j

k=0(−1)k
(

j
k

)(
x
k

)
k!(x−α)j−kp

−k, where (a)j := a(a+ 1) . . . (a+ j − 1). which are orthogonal w.r.t. weight
measure ρ(x) := s(x)

∑∞
k=0 δk(x).

2.4. Extension to Pearson-like and Ord-like Families

Suppose there is no Z1, i.e. Z = Z2. Suppose φ(x) is a polynomial of degree at most two and ψ(x) is a
decreasing linear function on an interval (a, b). Also φ(x) > 0 for a < x < b, φ(a) = 0 if a is finite, and φ(b) = 0
if b is finite. If ξ is a random variable with either Lebesgue density or density with respect to counting measure
f(x) on (a, b) that satisfies

D[φ(x)f(x)] = ψ(x)f(x), (2.11)

where D denotes derivative when ξ is continuous, and the forward difference operator Δ when ξ is discrete.
Then the above relation (2.11) describes the Pearson family when ξ is continuous and Ord family, when ξ
is discrete. Many continuous distributions fall into the Pearson family, and many discrete ones fall into Ord’s
family. See [18] and the references therein.

Suppose ξ is a random variable in either Pearson or Ord family. Following [18], define its Stein operator as

AQ(x) = φ(x)D∗Q(x) + ψ(x)Q(x)
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for all Q such that E[Q(ξ)] <∞ and E[D∗Q(ξ)] <∞, where D∗ denotes the derivative when ξ is continuous
and the backwards difference operator ∇ when ξ is discrete. Then E[AQ(ξ)] = 0. Let the corresponding Stein–
Markov operator, A, be defined as AQ := ADQ.

Now, consider a Stein operator AQ(x) = φ(x)D∗Q(x) + ψ(x)Q(x) together with the corresponding Stein–
Markov operator A for some random variable in either Pearson or Ord family. Let Qj be the orthogonal
polynomial eigenfunctions of A. Consider random variables X and Z, where the conditional distribution of X
given Z is such that the Stein operator of X given Z equals

AμQ = φD∗Q+ (ψ + cμ(Z))Q,

where c is a constant. Then E[AμQ(X)|Z] = 0. Now, since Qj are eigenfunctions of A,

λjE[Qj(X)|Z] = E[AQj(X)|Z] = E[ADQj(X)|Z] = E[(A−Aμ)DQj(X)|Z]
= −cμ(Z)E[DQj(X)|Z].

Letting Pj(Z) := E[Qj(X)|Z] we see that Pj ’s are jth-order polynomials in μ(Z) as DQj(x) can be expressed
as a linear combination of Q0(x), Q1(x), . . . , Qj−1(x) in the above equation analogous to (2.1). Thus our main
result Theorem 2.1 applies whenever the Stein operator of X |Z is expressed as AμQ = φD∗Q+ (ψ + cμ(Z))Q.
The question then arises for which, if any, conditional distributions of X |Z the Stein operator is of this form.
It should be pointed out that this current approach extends to multidimensional discrete X |Z, and other types
of distributions with well defined Stein operators. We now give some examples for such discrete distributions.

Examples:

1. Binomial distribution: It is known that

AQ(x) = (1 − p)x∇Q(x) + [pN − x]Q(x)

is the Stein operator for a Binomial random variable with parameters N and p. In this case, φ(x) = (1− p)x
and ψ(x) = pN − x. See [18].
Suppose X |Z ∼ Bin(N + μ(Z), p), with μ(Z) ∈ Z+. Then

AμQ(x) = (1 − p)x∇Q(x) + [pN + pμ(Z) − x]Q(x)

Let Q−1(x) := 0, Q1(x) = 0, and Qj(x) = Kj(x,N, p) =
∑j

l=0(−1)j−l
(
N−x
j−l

)(
x
l

)
pj−l(1 − p)l, the Krawtchouk

polynomials, are orthogonal with respect to the binomial Bin(N, p) distribution.
2. Pascal / Negative binomial distribution: It is known that

AQ(x) = x∇Q(x) + [(1 − p)α− px]Q(x)

is the Stein operator for a negative binomial random variable with parameters α and p. In this case, φ(x) = x
and ψ(x) = (1 − p)α− px. See [18].
Suppose

P (X = x|Z = z) = p(x|z) =
(
x+ α+ μ(z) − 1

x

)
pα+μ(z)(1 − p)x,

for x ∈ N+. Then
AμQ(x) = x∇Q(x) + [(1 − p)α+ (1 − p)μ(Z) − px]Q(x)

In this case, Qj = Mj(x;α, p), where Mj(x;α, p) denote Meixner polynomials which were defined in the
previous section and are orthogonal with respect to the Pascal distribution with parameter vector (α, p).
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3. Conclusion

In this paper we introduced an identification problem for nonparametric and semiparametric models in the
case when the conditional distribution ofX given Z belongs to the generalized power series distributions family9.
Using an approach based on differential equations, Sturm–Liouville theory specifically, we solved orthogonal
polynomial basis problem for the conditional expectation transformation, E[g(X)|Z]. Finally, we discussed how
our polynomial basis results can be extended to the case when the conditional distribution of X |Z belongs to
either the modified Pearson or modified Ord family.

In deriving our results we encountered a second order differential (or difference, in the case of discrete X)
equation with boundary values, which is a Sturm–Luiouville type equation. In this paper we focused on cases
in which the solutions to the Sturm–Liuouville problem, which are the eigenfunctions of the operator A, are an
orthogonal polynomial basis. Our approach is more general than this. In particular, one might question for what
conditional distributions the eigenfunctions of the Stein–Markov operator A are orthogonal basis functions, but
not necessarily orthogonal polynomials. Our paper does not address this question. Addressing this question is
left for future research. Finally, the work of applying the orthogonal polynomial basis approach for estimating
structural functions is nearing completion.
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