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AN �1-ORACLE INEQUALITY FOR THE LASSO
IN FINITE MIXTURE GAUSSIAN REGRESSION MODELS

Caroline Meynet
1

Abstract. We consider a finite mixture of Gaussian regression models for high-dimensional heteroge-
neous data where the number of covariates may be much larger than the sample size. We propose to
estimate the unknown conditional mixture density by an �1-penalized maximum likelihood estimator.
We shall provide an �1-oracle inequality satisfied by this Lasso estimator with the Kullback–Leibler
loss. In particular, we give a condition on the regularization parameter of the Lasso to obtain such
an oracle inequality. Our aim is twofold: to extend the �1-oracle inequality established by Massart and
Meynet [12] in the homogeneous Gaussian linear regression case, and to present a complementary result
to Städler et al. [18], by studying the Lasso for its �1-regularization properties rather than consider-
ing it as a variable selection procedure. Our oracle inequality shall be deduced from a finite mixture
Gaussian regression model selection theorem for �1-penalized maximum likelihood conditional density
estimation, which is inspired from Vapnik’s method of structural risk minimization [23] and from the
theory on model selection for maximum likelihood estimators developed by Massart in [11].
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1. Introduction

In applied statistics, tremendous number of applications deal with relating a random response variable Y
to a set of explanatory variables or covariates X through a regression-type model. As a consequence, linear
regression Y = Xβ+ ε is one of the most studied fields in statistics. Due to computer progress and development
of state of the art technologies such as DNA microarrays, we are faced with high-dimensional data where the
number of variables can be much larger than the sample size. To solve this problem, the sparsity scenario –
which consists in assuming that the coefficients of the high-dimensional vector of covariates are mostly 0 – has
been widely studied (see [6, 15] among others). These last years, a great deal of attention [19, 20, 25] has been
focused on the �1-penalized least squares estimator of parameters,

β̂(λ) = argmin
β∈Rp

{
‖Y −Xβ‖2

2 + λ‖β‖1

}
, λ > 0,
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which is called the Lasso according to the terminology of Tibshirani [19] who first introduced this estimator in
such a context. This interest has been motivated by the geometric properties of the �1-norm: �1-penalization
tends to produce sparse solutions and can be thus used as a convex surrogate for the non-convex �0-penalization.
Thus, the Lasso has essentially been developed for sparse recovery based on convex optimization. In this sparsity
approach, many results, such as �0-oracle inequalities, have been proved to study the performance of this
estimator as a variable selection procedure ([3, 8, 9, 15, 21] among others). Nonetheless, all these results need
strong restrictive eigenvalue assumptions on the Gram matrix XTX that can be far from being fulfilled in
practice (see [5] for an overview of these assumptions). In parallel, a few results on the performance of the Lasso
for its �1-regularization properties have been established [1, 10, 12, 17]. In particular, Massart and Meynet [12]
have provided an �1-oracle inequality for the Lasso in the framework of fixed design Gaussian regression. Contrary
to the �0-results that require strong assumptions on the regressors, their �1-result is valid with no assumption
at all.

In linear regression, the homogeneity assumption that the regression coefficients are the same for different
observations (X1, Y1), . . . , (Xn, Yn) is often inadequate and restrictive. It seems all the more true for the case of
high-dimensional data: at least a fraction of covariates may exhibit a different influence on the response among
various observations (i.e. sub-populations) and parameters may change for different subgroups of observations.
Thus, addressing the issue of heterogeneity in high-dimensional data is important in many practical applica-
tions. In particular, Städler et al. [18] have proved that substantial prediction improvements are possible by
incorporating a heterogeneity structure to the model. Such heterogeneity can be modeled by a finite mixture
of regressions model. Considering the important case of Gaussian models, we can then assume that, for all
i = 1, . . . , n, Yi follows a law with density sψ(·|xi) which is a finite mixture of K Gaussian densities with
proportion vector π,

Yi|Xi = xi ∼ sψ(Yi|xi) =
K∑
k=1

πk√
2πσk

exp

(
−
(
Yi − μTk xi

)2
2σ2

k

)

for some parameter ψ = (πk, μkj , σk)k,j .
In spite of the possible advantage of considering finite mixture regression models in high-dimensional data,

very few studies have been made on these models. Yet, one can mention Städler et al. [18] who propose an
�1-penalized maximum likelihood estimator,

ŝ(λ) = argmin
sψ

⎧⎨⎩− 1
n

n∑
i=1

ln (sψ(Yi|xi)) + λ

K∑
k=1

p∑
j=1

|μkj |

⎫⎬⎭ , (1.1)

and provide an �0-oracle inequality satisfied by this Lasso estimator. Since they work in a sparsity approach,
their oracle inequality is based on the same restricted eigenvalue conditions used in the homogeneous linear re-
gression described above. Moreover, the negative ln-likelihood function used for maximum likelihood estimation
requires additional mathematical arguments in comparison to the quadratic loss used in the homogeneous linear
regression case. In particular, Städler et al. [18] have to introduce some margin assumptions so as to link the
Kullback–Leibler loss function to the �2-norm of the parameters and get optimal rates of convergence of order
‖sψ‖0/n.

In this paper, we propose another approach that does not take into account sparsity. We shall rather study
the performance of the Lasso estimator in the framework of finite mixture Gaussian regression models for
its �1-regularization properties, thus extending the results presented in [12] for homogeneous Gaussian linear
regression models. As in [12], we shall restrict to the fixed design case, that is to say non-random regressors. We
aim at providing an �1-oracle inequality satisfied by the Lasso with no assumption neither on the Gram matrix
nor on the margin. This can be achieved due to the fact that we are only looking for rates of convergence of
order ‖sψ‖1/

√
n rather than ‖sψ‖0/n. We give a lower bound on the regularization parameter λ of the Lasso
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in (1.1) to guarantee such an oracle inequality,

λ ≥ CK (lnn)2
√

ln(2p+ 1)
n

, (1.2)

where C is a positive quantity depending on the parameters of the mixture and on the regressors whose value
is specified in (3.1). Our result is non-asymptotic: the number n of observations is fixed while the number p of
covariates can grow with respect to n and can be much larger than n. The numbers K of clusters in the mixture
is fixed. A great attention has been paid to obtain a lower bound (1.2) of λ with optimal dependence on p, that
is to say

√
ln(2p+ 1) just as in the case of homogeneous Gaussian linear regression in [12].

Our oracle inequality shall be deduced from a finite mixture Gaussian regression model selection theorem for
�1-penalized maximum likelihood conditional density estimation that we establish by following both Vapnik’s
method of structural risk minimization [23] and the theory [7, 11] around model selection. Just as in [12], the
key idea that enables us to deduce our �1-oracle inequality from such a model selection theorem is to view the
Lasso as the solution of a penalized maximum likelihood model selection procedure over a countable collection
of �1-ball models.

The article is organized as follows. The notations and the framework are introduced in Section 2. In Section 3,
we state the main result of the article, which is an �1-oracle inequality satisfied by the Lasso in finite mixture
Gaussian regression models. Section 4 is devoted to the proof of this result: in particular, we state and prove
the model selection theorem from which it is derived. Finally, some lemmas are proved in Section 5.

2. Notations and framework

2.1. The models

Our statistical framework is a finite mixture of Gaussian regressions model for high-dimensional data where
the number of covariates can be much larger than the sample size. We observe n couples ((xi, Yi))1≤i≤n of
variables. We are interested in estimating the law of the random variable Yi ∈ R conditionally to the fixed one
xi ∈ R

p. We assume that the couples (xi, Yi) are independent while Yi depends on xi through its law. More
precisely, we assume that the covariates xis are independent but not necessarily identically distributed. The
assumption on the Yis are stronger: we assume that, conditionally to the xis, they are independent and each
variable Yi follows a law with density s0(·|xi) which is a finite mixture of K Gaussian densities. Our goal is to
estimate this two-variables conditional density function s0 from the observations.

The model under consideration can be written as follows:

Yi|xi independent
Yi|xi = x ∼ sψ(y|x)dy

sψ(y|x) =
K∑
k=1

πk√
2πσk

exp

(
−
(
y − μTk x

)2
2σ2

k

)
,

ψ =
(
μT1 , . . . , μ

T
K , σ1, . . . , σK , π1, . . . , πK

)
∈
(
R
pK × R

K
>0 ×Π

)
,

Π =

{
π = (π1, . . . , πK) : πk > 0 for k = 1, . . . ,K and

K∑
k=1

πk = 1

}
.

The μks are the vectors of regression coefficients, the σks are the standard deviations in mixture component
k while the πks are the mixture coefficients.

For all x ∈ R
p, we define the parameter ψ(x) of the conditional density sψ(.|x) by

ψ(x) =
(
μT1 x, . . . , μ

T
Kx, σ1, . . . , σK , π1, . . . , πK

)
∈ R

3K .
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For all k = 1, . . . ,K, μTk x is the mean coefficient of the mixture component k for the conditional density sψ(.|x).
Since we are working conditionally to the covariates (xi)1≤i≤n, our results shall be expressed with quantities

depending on them. In particular, we shall consider the following notation:

‖x‖max,n :=

√√√√ 1
n

n∑
i=1

max
j=1,...,p

x2
ij .

2.2. Boundedness assumption on the mixture and component parameters

For technical reasons, we shall restrict our study to bounded parameter vectors ψ = (μTk , σk, πk)k=1,...,K .
Specifically, we shall assume that there exist deterministic positive quantities aμ, Aμ, aσ, Aσ and aπ such that
the parameter vectors belong to the bounded space

Ψ =
{
ψ : ∀k = 1, . . . ,K, aμ ≤ inf

x∈Rp

∣∣μTk x∣∣ ≤ sup
x∈Rp

∣∣μTk x∣∣ ≤ Aμ, aσ ≤ σk ≤ Aσ, aπ ≤ πk

}
. (2.1)

We denote by S the set of conditional densities sψ in this model:

S =
{
sψ, ψ ∈

(
R
pK × R

K
>0 ×Π

)
∩ Ψ

}
.

To simplify the proofs, we shall also assume that the true density s0 belongs to S, that is to say there exists ψ0

such that
s0 = sψ0 , ψ0 =

(
μT0,k, σ0,k, π0,k

)
k=1,...,K

∈
(
R
pK × R

K
>0 ×Π

)
∩ Ψ.

2.3. The Lasso estimator

In a maximum likelihood approach, the loss function taken into consideration is the Kullback–Leibler infor-
mation, which is defined for two densities s and t by

KL(s, t) =
∫

R

ln
(
s(y)
t(y)

)
s(y) dy

if sdy is absolutely continuous with respect to tdy and +∞ otherwise.
Since we are working with conditional densities and not with classical densities, we define the following

adapted Kullback–Leibler information that takes into account the structure of conditional densities. For fixed
covariates x1, . . . , xn, we consider the average loss function

KLn(s, t) =
1
n

n∑
i=1

KL(s(·|xi), t(·|xi)) =
1
n

n∑
i=1

∫
R

ln
(
s(y|xi)
t(y|xi)

)
s(y|xi) dy. (2.2)

The maximum likelihood approach suggests to estimate s0 by the conditional density sψ that maximizes the
likelihood conditionally to (xi)1≤i≤n,

ln

(
n∏
i=1

sψ(Yi|xi)
)

=
n∑
i=1

ln (sψ(Yi|xi)) ,

or equivalently that minimizes the empirical contrast which is −
∑n
i=1 ln(sψ(Yi|xi))/n. But since we want to

deal with high-dimensional data, we have to regularize the maximum likelihood estimator in order to obtain rea-
sonably accurate estimates. Here, we shall consider �1-regularization and its associated so-called Lasso estimator
which is the following �1-norm penalized maximum likelihood estimator:

ŝ(λ) := argmin
sψ∈S

{
− 1
n

n∑
i=1

ln (sψ(Yi|xi)) + λ|sψ |1

}
, (2.3)
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where λ > 0 is a regularization parameter to be tuned and

|sψ|1 :=
K∑
k=1

‖μk‖1 =
K∑
k=1

p∑
j=1

|μkj |

for ψ = (μTk , σk, πk)k=1,...,K and μk = (μkj)j=1,...,p for all k = 1, . . . ,K.

3. An �1-ball regression mixture model selection theorem

3.1. An �1-oracle inequality for the Lasso in mixture Gaussian regression models

We state here the main result of the article: Theorem 3.1 provides an �1-oracle inequality satisfied by the
Lasso estimator in finite mixture Gaussian regression models.

Theorem 3.1. Denote a ∧ b = min(a, b). Assume that

λ ≥ κ

aσ ∧ aπ

(
1 +

(
A2
μ +A2

σ ln(n)
)

a2
σ

) √
K√
n

(
1 + ‖x‖max,n ln(n)

√
K ln(2p+ 1)

)
(3.1)

for some absolute constant κ ≥ 360. Then, the Lasso estimator ŝ(λ) defined by (2.3) satisfies the following
�1-oracle inequality:

E [KLn (s0, ŝ(λ))] ≤ (1 + κ−1) inf
sψ∈S

(KLn(s0, sψ) + λ|sψ|1) + λ

+
κ′

√
K√
n

⎡⎣K
(
1 + (Aμ +Aσ)

2
)

aσ ∧ aπ

(
1 +

(
A2
μ +A2

σ ln(n)
)

a2
σ

)
+ aσe

− 1
2

(
1+

a2μ
2A2
σ

)⎤⎦ ,
where κ′ is an absolute positive constant.

Remark 3.2. We have not looked for optimizing the constants in Theorem 3.1. Thus, we do not explicit the
value of κ′ and the lower bound on κ is sufficient but not optimal.

Theorem 3.1 provides information about the performance of the Lasso as an �1-regularization algorithm. It
highlights the fact that, provided that the regularization parameter λ is properly chosen, the Lasso estimator,
which is the solution of the �1-penalized empirical risk minimization problem, behaves as well as the deterministic
Lasso, that is to say the solution of the �1-penalized true risk minimization problem, up to an error term of
order λ. This �1-result is complementary to the �0-oracle inequality in [18] whose is rather stated in a sparsity
approach looking at the Lasso as a variable selection procedure.

Let us stress that we present here an �1-oracle inequality with no assumption neither on the Gram matrix
nor on the margin. This represents a great advantage compared to the �0-oracle inequality in [18] which requires
some restricted eigenvalue conditions as well as margin assumptions involving unknown constants. Indeed, if one
may prove that these assumptions are actually fulfilled for some constants in the case of finite mixture regression
models thanks to theoretical arguments such as continuity or differentiability of the functions into consideration,
it seems nonetheless very hard to calculate explicit values of the constants for which these assumptions are
fulfilled. One has thus no idea of the concrete values of these quantities. Yet, the �0-oracle inequality established
in [18] strongly depends on these unknown quantities. So, it is difficult to interpret the precision of this result
and it makes it hardly interpretable. On the contrary, the only assumption used to establish Theorem 3.1 is the
boundedness of the parameters of the mixture, which is anyway also assumed in [18] and which is quite usual
when working with maximum likelihood estimation [2,13], at least to tackle the problem of the unboundedness
of the likelihood at the boundary of the parameter space [14, 16] and to prevent it from divergence. In fact,
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Städler et al. [18] must make their eigenvalue condition so as to bound the �2-norm of the parameter vector on
its support and they add assumptions on the margin in order to link the loss function to the �2-norm of the
parameters and get optimal rates of convergence ‖sψ‖0/n in a sparsity viewpoint. On the opposite, since we are
interested in an �1-regularization approach, we are just looking for rates of convergence of order ‖sψ‖1/

√
n and

we can avoid such restrictive vague assumptions.
Both our �1-oracle inequality and the �0-oracle inequality in [18] are valid for regularization parameters of

the same order as regards the sample size n and the number of covariates p, that is (lnn)2
√

ln(2p+ 1)/n. This
means that if one considers a Lasso estimator with such a regularization parameter, then, even if one can not
be sure that the Lasso indeed performs well as regards variable selection (because one can not have precise idea
of the unknown constants present in Städler et al. [18]), one is at least guaranteed that the Lasso will act as a
good �1-regularizator.

Our result is non-asymptotic: the number n of observations is fixed while the number p of covariates can
grow with respect to n and can be much larger than n. The numbers K of clusters in the mixture is fixed.
A great attention has been paid to obtain a lower bound (1.2) of λ with optimal dependence on p, which
is the only parameter not to be fixed and which can grow with possibly p � n. We thus recover the same
dependence

√
ln(2p+ 1) as for the homogeneous linear regression in [12]. On the contrary, the dependence on

n for the homogeneous linear regression in [12] was 1/
√
n while we have an extra-(lnn)2 factor here. In fact,

the linearity arguments developed in [12] with the quadratic loss function can not be exploited here with the
non-linear Kullback–Leibler information. Entropy arguments are instead envisaged, leading to an extra-lnn
factor. Contrary to Städler et al. [18], we have paid attention to giving an explicit dependence not only on n
and p, but also on the number of clusters K in the mixture as well as on the regressors and all the quantities
bounding the mixture parameters of the model. Nonetheless, we are aware of the fact that these dependences
may not be optimal. In particular, we get a linear dependence on K in (3.1), while we might think that the true
minimal dependence is only

√
K (see Rem. 5.8 for more details).

4. Proof of Theorem 3.1

4.1. Statement of the main results

To prove Theorem 3.1, we look at the Lasso as the solution of a penalized maximum likelihood model selection
procedure over a countable collection of �1-ball models. Using this basic idea, Theorem 3.1 is an immediate
consequence of Theorem 4.1 stated below, which is an �1-ball mixture regression model selection theorem for
�1-penalized maximum likelihood conditional density estimation in the Gaussian framework.

Theorem 4.1. Assume we observe ((xi, Yi))1≤i≤n with unknown conditional Gaussian mixture density s0. For
all m ∈ N

∗, consider the �1-ball
Sm = {sψ ∈ S, |sψ|1 ≤ m} (4.1)

and let ŝm be a ηm-ln-likelihood minimizer in Sm for some ηm ≥ 0:

− 1
n

n∑
i=1

ln(ŝm(Yi|xi)) ≤ inf
sm∈Sm

(
− 1
n

n∑
i=1

ln(sm(Yi|xi))
)

+ ηm. (4.2)

Assume that for all m ∈ N
∗, the penalty function satisfies pen(m) = λm with

λ ≥ κ

aσ ∧ aπ

(
1 +

(
A2
μ +A2

σ ln(n)
)

a2
σ

) √
K√
n

(
1 + ‖x‖max,n ln(n)

√
K ln(2p+ 1)

)
(4.3)

for some absolute constant κ ≥ 360. Then, any penalized likelihood estimate ŝm̂ with m̂ such that

− 1
n

n∑
i=1

ln(ŝm̂(Yi|xi)) + pen(m̂) ≤ inf
m∈N∗

(
− 1
n

n∑
i=1

ln(ŝm(Yi|xi)) + pen(m)

)
+ η (4.4)
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for some η ≥ 0 satisfies

E [KLn(s0, ŝm̂)] ≤ (1 + κ−1) inf
m∈N∗

(
inf

sm∈Sm
KLn(s0, sm) + pen(m) + ηm

)

+
κ′

√
K√
n

⎡⎣K
(
1 + (Aμ +Aσ)

2
)

aσ ∧ aπ

(
1 +

(
A2
μ +A2

σ ln(n)
)

a2
σ

)
+ aσ e

− 1
2

(
1+

a2μ
2A2
σ

)⎤⎦+ η, (4.5)

where κ′ is an absolute positive constant.

Theorem 4.1 can be deduced from the two following propositions.

Proposition 4.2. Assume we observe ((xi, Yi))1≤i≤n with unknown conditional density s0. Let Mn > 0 and
consider the event

T :=
{

max
i=1,...,n

|Yi| ≤Mn

}
.

For all m ∈ N
∗, consider the �1-ball

Sm = {sψ ∈ S, |sψ|1 ≤ m} (4.6)

and let ŝm be a ηm-ln-likelihood minimizer in Sm for some ηm ≥ 0:

− 1
n

n∑
i=1

ln(ŝm(Yi|xi)) ≤ inf
sm∈Sm

(
− 1
n

n∑
i=1

ln(sm(Yi|xi))
)

+ ηm.

Assume that for all m ∈ N
∗, the penalty function satisfies pen(m) = λm with

λ ≥ κ

aσ ∧ aπ

(
1 +

(Mn +Aμ)2

a2
σ

) √
K√
n

(
1 + ‖x‖max,n ln(n)

√
K ln(2p+ 1)

)
(4.7)

for some absolute constant κ ≥ 36. Then, any penalized likelihood estimate ŝm̂ with m̂ such that

− 1
n

n∑
i=1

ln(ŝm̂(Yi|xi)) + pen(m̂) ≤ inf
m∈N∗

(
− 1
n

n∑
i=1

ln(ŝm(Yi|xi)) + pen(m)

)
+ η (4.8)

for some η ≥ 0 satisfies

E [KLn(s0, ŝm̂)�T ] ≤ (1 + κ−1) inf
m∈N∗

(
inf

sm∈Sm
KLn(s0, sm) + pen(m) + ηm

)

+ κ′K3/2

(
1 + (Aμ +Aσ)

2
)

(aσ ∧ aπ)
√
n

(
1 +

(Mn +Aμ)2

a2
σ

)
+ η, (4.9)

where κ′ is an absolute positive constant.

Proposition 4.3. Consider s0, T and ŝm̂ defined in Proposition 4.2. Denote by T C the complementary event
of T ,

T C =
{

max
i=1,...,n

|Yi| > Mn

}
.

Assume that the unknown conditional density s0 is a mixture of Gaussian densities. Then,

E [KLn(s0, ŝm̂)�T C ] ≤
√

2πK aσ e
− 1

2

(
1+

a2μ
2A2
σ

)
e
−Mn(Mn−2Aμ)

4A2
σ

√
n.

Theorem 4.1, Propositions 4.2 and 4.3 are proved below.
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4.2. Proofs

The main result is Proposition 4.2. Its proof follows the arguments developed in the proof of a more general
model selection theorem for maximum likelihood estimators (Thm. 7.11) in [11]. Nonetheless, these arguments
are here lightened. In particular, in the Proof of Theorem 7.11 [11], in addition to the relative expected loss
function, another way of measuring the closeness between the elements of the model is required. It is directly
connected to the variance of the increments of the empirical process. The main tool used is Bousquet’s version
of Talagrand’s inequality for empirical processes to concentrate the oscillations of the empirical process by the
modulus of uniform continuity of the empirical process in expectation. Then, the main task is to compute this
modulus of uniform continuity. To evaluate it, some margin conditions (such as the ones in [18]) are necessary.
On the contrary, we do not need such conditions to prove Proposition 4.2 because we are just looking for
low rates of convergence. Therefore, the Proof of Proposition 4.2 is rather in the spirit of Vapnik’s method
of structural risk minimization (initiated in [23], further developed in [24] and briefly summarized in Sect. 8.2
in [11]) that provides a less refined – yet sufficient for our study – analysis of the risk of an empirical risk
minimizer than Theorem 7.11 [11]. To obtain an upper bound of the empirical process in expectation, we shall
use concentration inequalities combined with symmetrization arguments.

4.2.1. Proof of Proposition 4.2

Let us first introduce some definitions and notations that we shall use throughout the proof.
For any measurable function g : R 
→ R, consider its empirical norm

‖g‖n :=

√√√√ 1
n

n∑
i=1

g2(Yi|xi), (4.10)

its conditional expectation

EX [g] = E [g(.|X)|X = x] =
∫

R

g(y|x)s0(y|x) dy,

as well as its empirical process

Pn(g) :=
1
n

n∑
i=1

g(Yi|xi), (4.11)

and the recentred process

νn(g) := Pn(g) − EX [Pn (g)] =
1
n

n∑
i=1

[
g(Yi|xi) −

∫
R

g(y|xi)s0(y|xi) dy
]
. (4.12)

For all m ∈ N
∗, for all model Sm, define

Fm =
{
fm = − ln

(
sm
s0

)
, sm ∈ Sm

}
. (4.13)

Let δKL > 0. For all m ∈ N
∗, let ηm ≥ 0. Then, there exist two functions ŝm and sm in Sm such that

Pn(− ln ŝm) ≤ inf
sm∈Sm

Pn(− ln sm) + ηm (4.14)

KLn(s0, sm) ≤ inf
sm∈Sm

KLn(s0, sm) + δKL. (4.15)

Put

f̂m := − ln
(
ŝm
s0

)
, fm := − ln

(
sm
s0

)
· (4.16)
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Let η ≥ 0 and fix m ∈ N
∗. Define

M(m) = {m′ ∈ N
∗|Pn(− ln ŝm′) + pen(m′) ≤ Pn(− ln ŝm) + pen(m) + η} . (4.17)

For every m′ ∈ M(m), we get from (4.17), (4.16) and (4.14) that

Pn

(
f̂m′

)
+ pen(m′) ≤ Pn

(
f̂m

)
+ pen(m) + η ≤ Pn

(
fm

)
+ pen(m) + ηm + η,

which implies by (4.12) that

EX

[
Pn

(
f̂m′

)]
+ pen(m′) ≤ EX

[
Pn

(
fm

)]
+ pen(m) + νn

(
fm

)
− νn

(
f̂m′

)
+ ηm + η.

Taking into account (2.2), (4.11) and (4.15), we get

KLn(s0, ŝm′) + pen(m′) ≤ inf
sm∈Sm

KLn(s0, sm) + pen(m) + νn
(
fm

)
− νn

(
f̂m′

)
+ ηm + η + δKL. (4.18)

Thus, all the matter is to control the deviation of −νn(f̂m′) = νn(−f̂m′). To cope with the randomness of f̂m′ ,
we shall control the deviation of supfm′∈Fm′ νn (−fm′) . Such a control is provided by the following Lemma 4.4.

Lemma 4.4. Let Mn > 0. Consider the event

T :=
{

max
i=1,...,n

|Yi| ≤Mn

}
.

Put

Bn =
1

aσ ∧ aπ

(
1 +

(Mn +Aμ)2

a2
σ

)
(4.19)

and
Δm′ := m′‖x‖max,n lnn

√
K ln(2p+ 1) + 6 (1 +K(Aμ +Aσ)) . (4.20)

Then, on the event T , for all m′ ∈ N
∗, for all t > 0, with PX-probability greater than 1 − e−t,

sup
fm′∈Fm′

|νn (−fm′)| ≤ 4Bn√
n

[
9
√
KΔm′ +

√
2(1 +K(Aμ +Aσ))

√
t
]
· (4.21)

Proof. (See Sect. 4.2.4) �

We derive from (4.18) and (4.21) that on the event T , for all m ∈ N
∗, for all m′ ∈ M(m), for all t > 0, with

PX -probability larger than 1 − e−t,

KLn(s0, ŝm′) + pen(m′) ≤ inf
sm∈Sm

KLn(s0, sm) + pen(m) + νn
(
fm

)
+

4Bn√
n

[
9
√
KΔm′ +

√
2(1 +K(Aμ + Aσ))

√
t
]

+ ηm + η + δKL

≤ inf
sm∈Sm

KLn(s0, sm) + pen(m) + νn
(
fm

)
+

4Bn√
n

(
9
√
KΔm′ +

1
2
√
K

(1 +K (Aμ +Aσ))
2 +

√
Kt

)
+ ηm + η + δKL, (4.22)

where we get the last inequality by using 2ab ≤ θa2 + θ−1b2 for θ = 1/
√
K.
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It remains to sum up the tail bounds (4.22) over all the possible values of m ∈ N
∗ and m′ ∈ M(m). To get an

inequality valid on a great probability set, we need to choose adequately the value of the parameter t depending
on m ∈ N

∗ and m′ ∈ M(m). Let z > 0. For all m ∈ N
∗ and m′ ∈ M(m), apply (4.22) to t = z+m+m′. Then,

on the event T , for all m ∈ N
∗, for all m′ ∈ M(m), with PX-probability larger than 1 − e−(z+m+m′),

KLn(s0, ŝm′) + pen(m′) ≤ inf
sm∈Sm

KLn(s0, sm) + pen(m) + νn
(
fm

)
+

4Bn√
n

(
9
√
KΔm′ +

1
2
√
K

(1 +K (Aμ + Aσ))
2 +

√
K(z +m+m′)

)
+ ηm + η + δKL, (4.23)

and on the event T , with PX -probability larger than

1 −
∑

(m,m′)∈N∗×M(m)

e−(z+m+m′) ≥ 1 −
∑

(m,m′)∈N∗×N∗
e−(z+m+m′) = 1 − e−z

( ∑
m∈N∗

e−m
)2

≥ 1 − e−z,

(4.23) holds simultaneously for all m ∈ N
∗ and m′ ∈ M(m).

Inequality (4.23) can also be written

KLn(s0, ŝm′) − νn
(
fm

)
≤ inf

sm∈Sm
KLn(s0, sm) +

[
pen(m) +

4Bn√
n

√
Km

]
+
[
4Bn√
n

√
K (9Δm′ +m′) − pen(m′)

]
+

4Bn√
n

(
1

2
√
K

(1 +K (Aμ +Aσ))
2 +

√
Kz

)
+ ηm + η + δKL.

Taking into account Definition (4.20) of Δm′ , it gives

KLn(s0, ŝm′) − νn
(
fm

)
≤ inf
sm∈Sm

KLn(s0, sm) +
[
pen(m) +

4Bn√
n

√
Km

]
+
[
4Bn√
n

√
K
(
9‖x‖max,n lnn

√
K ln(2p+ 1) + 1

)
m′ − pen(m′)

]
+

4Bn√
n

(
1

2
√
K

(1 +K (Aμ +Aσ))
2 + 54

√
K (1 +K(Aμ +Aσ)) +

√
Kz

)
+ ηm + η + δKL. (4.24)

Now, let κ ≥ 1 and assume that pen(m) satisfies pen(m) = λm with

λ ≥ 4κ
Bn√
n

√
K
(
9‖x‖max,n lnn

√
K ln(2p+ 1) + 1

)
.

Then, (4.24) implies

KLn(s0, ŝm′) − νn
(
fm

)
≤ inf
sm∈Sm

KLn(s0, sm) + (1 + κ−1) pen(m)

+
4Bn√
n

(
1

2
√
K

(1 +K (Aμ +Aσ))
2 + 54

√
K (1 +K(Aμ +Aσ)) +

√
Kz

)
+ ηm + η + δKL.
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Then, using the inequality 2ab ≤ βa2 + β−1b2 for β =
√
K,

KLn(s0, ŝm′) − νn
(
fm

)
≤ inf

sm∈Sm
KLn(s0, sm) + (1 + κ−1) pen(m)

+
4Bn√
n

(
27K3/2 +

55
2
√
K

(1 +K (Aμ +Aσ))
2 +

√
Kz

)
+ ηm + η + δKL. (4.25)

Now consider m̂ defined by (4.8). By Definitions (4.8) and (4.17), m̂ belongs to M(m) for all m ∈ N
∗, so we

deduce from (4.25) that on the event T , for all z > 0, with PX -probability greater than 1 − e−z,

KLn(s0, ŝm̂) − νn
(
fm

)
≤ inf

m∈N∗

(
inf

sm∈Sm
KLn(s0, sm) + (1 + κ−1) pen(m) + ηm

)
+

4Bn√
n

(
27K3/2 +

55
2
√
K

(1 +K (Aμ +Aσ))
2 +

√
Kz

)
+ η + δKL. (4.26)

We end the proof by integrating (4.26) with respect to z. Noticing that E
(
νn

(
fm

))
= 0 and that δKL can be

chosen arbitrary small, we get

E [KLn(s0, ŝm̂)�T ] ≤ inf
m∈N∗

(
inf

sm∈Sm
KLn(s0, sm) + (1 + κ−1) pen(m) + ηm

)
+

4Bn√
n

(
27K3/2 +

55
2
√
K

(1 +K (Aμ +Aσ))
2 +

√
K

)
+ η

≤ inf
m∈N∗

(
inf

sm∈Sm
KLn(s0, sm) + (1 + κ−1) pen(m) + ηm

)
+

112Bn√
n

K3/2
(
1 + (Aμ +Aσ)

2
)

+ η,

hence (4.9) taking into account the value (4.19) of Bn.

4.2.2. Proof of Proposition 4.3

By Cauchy–Schwarz Inequality,

E [KLn(s0, ŝm̂)�T C ] ≤
√

E [KL2
n(s0, ŝm̂)]

√
P (T C). (4.27)

Let us bound the two terms of the right-hand side of (4.27).
For the first term, let us bound KL(s0(.|x), sψ(.|x)) for all sψ ∈ S and x ∈ R

p.
Let sψ ∈ S and x ∈ R

p. Since s0 is a density, s0 is bounded by 1 and thus

KL(s0(.|x), sψ(.|x)) =
∫

R

ln
(
s0(y|x)
sψ(y|x)

)
s0(y|x) dy

=
∫

R

ln(s0(y|x))s0(y|x) dy −
∫

R

ln(sψ(y|x))s0(y|x) dy

≤ −
∫

R

ln(sψ(y|x))s0(y|x) dy. (4.28)
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Denote ψ = (μTk , σk, πk)k=1,...,K . The parameters ψ and ψ0 are assumed to belong to the bounded space Ψ
defined by (2.1), so for all y ∈ R,

ln(sψ(y|x))s0(y|x)

= ln

[
K∑
k=1

πk√
2πσk

exp

(
−1

2

(
y − μTk x

σk

)2
)]

K∑
k=1

π0,k√
2πσ0,k

exp

⎛⎝−1
2

(
y − μT0,kx

σ0,k

)2
⎞⎠

≥ ln

[
K∑
k=1

πk√
2πσk

exp

(
−
y2 +

(
μTk x

)2
σ2
k

)]
K∑
k=1

π0,k√
2πσ0,k

exp

⎛⎜⎝−
y2 +

(
μT0,kx

)2

σ2
0,k

⎞⎟⎠
≥ ln

[
K

aπ√
2πAσ

exp

(
−
y2 +A2

μ

a2
σ

)]
K

aπ√
2πAσ

exp

(
−
y2 +A2

μ

a2
σ

)

=
Kaπ√
2πAσ

exp

(
−
A2
μ

a2
σ

)[
ln
(

Kaπ√
2πAσ

)
−
A2
μ + y2

a2
σ

]
exp

(
− y2

a2
σ

)
· (4.29)

Therefore, putting u =
√

2y/aσ and h(t) = t ln t for all t ∈ R and noticing that h(t) ≥ h(e−1) = −e−1 for all
t ∈ R, we get from (4.28) and (4.29) that

KL(s0(.|x), sψ(.|x)) ≤ −Kaπaσ e−(Aμ/aσ)2

√
2Aσ

∫
R

[
ln
(

Kaπ√
2πAσ

)
−
A2
μ

a2
σ

− u2

2

]
e−u

2/2

√
2π

du

≤ −Kaπaσ e−(Aμ/aσ)2

√
2Aσ

E

[
ln
(

Kaπ√
2πAσ

)
−
A2
μ

a2
σ

− U2

2

]
with U ∼ N (0, 1)

≤ −Kaπaσ e−(Aμ/aσ)2

√
2Aσ

[
ln
(

Kaπ√
2πAσ

)
−
A2
μ

a2
σ

− 1
2

]

≤ −
√
π e1/2aσ h

(
Kaπ e−[(Aμ/aσ)2+1/2]

√
2πAσ

)
≤

√
π e−1/2aσ. (4.30)

Then, for all sψ ∈ S,

KLn(s0, sψ) =
1
n

n∑
i=1

KL(s0(.|xi), sψ(.|xi)) ≤
√
π e−1/2aσ

and thus √
E [KL2

n(s0, ŝm̂)] ≤
√
π e−1/2aσ. (4.31)

Let us now provide an upper bound of P(T C).

P
(
T C

)
= E (�T C ) = E [EX (�T C )] = E

[
PX

(
T C

)]
(4.32)

with

PX

(
T C

)
= PX

(
n⋃
i=1

{|Yi| > Mn}
)

≤
n∑
i=1

PX(|Yi| > Mn). (4.33)

For all i = 1, . . . , n, Yi|xi ∼
∑K

k=1 πkN
(
μTk xi, σ

2
k

)
, so we see from (4.33) that we just need to provide an upper

bound of P (|Yx| > Mn) with Yx ∼
∑K

k=1 πkN
(
μTk x, σ

2
k

)
for x ∈ R

p. First using Chernoff’s inequality for a
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centered Gaussian variable (see [11]), and then the fact that ψ belongs to the bounded space Ψ defined by (2.1)
and that

∑K
k=1 πk = 1, we get

P (|Yx| > Mn) =
∫

R

�{|y|>Mn}

K∑
k=1

πk
1√

2πσk
e
− 1

2

(
y−μTk x
σk

)2

dy

=
K∑
k=1

πk

∫
R

�{|y|>Mn}
1√

2πσk
e
− 1

2

(
y−μTk x
σk

)2

dy (4.34)

=
K∑
k=1

πk P (|Yx,k| > Mn) with Yx,k ∼ N
(
μTk x, σ

2
k

)
(4.35)

=
K∑
k=1

πk

[
P

(
U >

Mn − μTk x

σk

)
+ P

(
U >

Mn + μTk x

σk

)]
with U ∼ N (0, 1)

≤
K∑
k=1

πk

[
e
− 1

2

(
Mn−μTk x

σk

)2

+ e
− 1

2

(
Mn+μTk x

σk

)2]

≤ 2
K∑
k=1

πk e
− 1

2

(
Mn−|μTk x|

σk

)2

≤ 2
K∑
k=1

πk e
−
M2
n+(μTk x)

2−2Mn|μTk x|
2σ2
k

≤ 2Ke
−
M2
n+a2μ−2MnAμ

2A2
σ . (4.36)

We derive from (4.32), (4.33) and (4.36) that

P(T C) ≤ 2Ke
−
M2
n+a2μ−2MnAμ

2A2
σ n, (4.37)

and we finally get from (4.27), (4.31) and (4.37) that

E [KLn(s0, ŝm̂)�T C ] ≤
√

2πK aσ e
− 1

2

(
1+

a2μ
2A2
σ

)
e
−Mn(Mn−2Aμ)

4A2
σ

√
n. (4.38)

4.2.3. Proof of Theorem 4.1

Let Mn > 0 and κ ≥ 36. Assume that, for all m ∈ N
∗, the penalty function satisfies pen(m) = λm with

λ ≥ κ

aσ ∧ aπ

(
1 +

(Mn +Aμ)2

a2
σ

) √
K√
n

(
1 + ‖x‖max,n ln(n)

√
K ln(2p+ 1)

)
. (4.39)

We derive from Propositions 4.2 and 4.3 that there exists an absolute positive constant κ′ such that any penalized
likelihood estimate ŝm̂ with m̂ such that

− 1
n

n∑
i=1

ln(ŝm̂(Yi|xi)) + pen(m̂) ≤ inf
m∈N∗

(
− 1
n

n∑
i=1

ln(ŝm(Yi|xi)) + pen(m)

)
+ η
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satisfies

E [KLn(s0, ŝm̂)] = E [KLn(s0, ŝm̂)�T ] + E [KLn(s0, ŝm̂)�T C ]

≤ (1 + κ−1) inf
m∈N∗

(
inf

sm∈Sm
KLn(s0, sm) + pen(m) + ηm

)

+ κ′K3/2

(
1 + (Aμ +Aσ)

2
)

√
n (aσ ∧ aπ)

(
1 +

(Mn +Aμ)2

a2
σ

)
+ η

+
√

2πK aσ e
− 1

2

(
1+

a2μ
2A2
σ

)
e
−Mn(Mn−2Aμ)

4A2
σ

√
n. (4.40)

To get inequality (4.5), it only remains to optimize Inequality (4.40) with respect to Mn. Since the two terms
depending on Mn in (4.40) have opposite monotony with respect to Mn, we are looking for a value of Mn such
that these two terms are of the same order with respect to n. Consider Mn = Aμ+

√
A2
μ + 4A2

σ lnn the positive

solution of the equation X(X − 2Aμ) − 4A2
σ lnn = 0. Then, on the one hand,

e
−Mn(Mn−2Aμ)

4A2
σ

√
n = e− lnn√n =

1√
n
·

On the other hand, using the inequality (a+ b)2 ≤ 2(a2 + b2), we have

1√
n

(
1 +

(Mn +Aμ)2

a2
σ

)
=

1√
n

⎛⎜⎝1 +

(
2Aμ +

√
A2
μ + 4A2

σ lnn
)2

a2
σ

⎞⎟⎠ ≤ 1√
n

(
1 +

2
(
5A2

μ + 4A2
σ lnn

)
a2
σ

)
,

hence (4.5).
The upper bound (4.3) of the tuning parameter λ is obtained from the upper bound (4.39) and the fact that

(Mn +Aμ)2 ≤ 2(5A2
μ + 4A2

σ lnn) for Mn = Aμ +
√
A2
μ + 4A2

σ lnn.

4.2.4. Proof of Theorem 3.1

Let λ > 0. Define m̂ as the smallest integer such that ŝ(λ) belongs to Sm̂, i.e. m̂ = �|ŝ(λ)|1� . Then, using
the definition of m̂, the definition (2.3) of ŝ(λ) and (4.1), we get

− 1
n

n∑
i=1

ln (ŝ(λ)(Yi|xi)) + λm̂ ≤ − 1
n

n∑
i=1

ln (ŝ(λ)(Yi|xi)) + λ|ŝ(λ)|1 + λ

= inf
sψ∈Ψ

(
− 1
n

n∑
i=1

ln (sψ(Yi|xi)) + λ|sψ|1

)
+ λ

= inf
m∈N∗

inf
sψ∈Ψ,|ψ|1≤m

(
− 1
n

n∑
i=1

ln (sψ(Yi|xi)) + λ|sψ|1

)
+ λ

≤ inf
m∈N∗

(
inf

sm∈Sm

(
− 1
n

n∑
i=1

ln (sm(Yi|xi))
)

+ λm

)
+ λ,

which implies

− 1
n

n∑
i=1

ln (ŝ(λ)(Yi|xi)) + pen(m̂) ≤ inf
m∈N∗

(
− 1
n

n∑
i=1

ln (ŝm(Yi|xi)) + pen(m)

)
+ η,

with pen(m) = λm, η = λ and ŝm defined by (4.2) with ηm = 0. Thus, ŝ(λ) satisfies (4.4) and Theorem 3.1
follows from Theorem 4.1.
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5. Proofs of the lemmas

5.1. Proof of Lemma 4.4

Let m ∈ N
∗. From (4.12), we have

sup
fm∈Fm

|νn (−fm)| = sup
fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

(fm(Yi|xi) − EX [fm(Yi|xi)])
∣∣∣∣∣ . (5.1)

To control the deviation of such a quantity, we shall combine concentration with symmetrization arguments.
We shall first use the following concentration inequality which can be found in [4].

Lemma 5.1 (see [4]). Let Z1, . . . , Zn be independent random variables with values in some space Z and let
Γ be a class of real-valued functions on Z. Assume that there exists Rn a non-random constant such that
supγ∈Γ ‖γ‖n ≤ Rn. Then, for all t > 0,

P

(
sup
γ∈Γ

∣∣∣∣∣ 1n
n∑
i=1

γ(Zi) − E (γ(Zi))

∣∣∣∣∣ > E

[
sup
γ∈Γ

∣∣∣∣∣ 1n
n∑
i=1

γ(Zi) − E (γ(Zi))

∣∣∣∣∣
]

+ 2
√

2Rn

√
t

n

)
≤ e−t. (5.2)

Then, we propose to bound E
[
supγ∈Γ

∣∣ 1
n

∑n
i=1 γ(Zi) − E (γ(Zi))

∣∣] thanks to the following symmetrization ar-
gument. The proof of this result can be found in [22].

Lemma 5.2 (see Lem. 2.3.6 in [22]). Let Z1, . . . , Zn be independent random variables with values in some space
Z and let Γ be a class of real-valued functions on Z. Let (ε1, . . . , εn) be a Rademacher sequence independent of
(Z1, . . . , Zn). Then,

E

[
sup
γ∈Γ

∣∣∣∣∣ 1n
n∑
i=1

γ(Zi) − E (γ(Zi))

∣∣∣∣∣
]
≤ 2E

[
sup
γ∈Γ

∣∣∣∣∣ 1n
n∑
i=1

εiγ(Zi)

∣∣∣∣∣
]
. (5.3)

From (5.3), the problem boils down to providing an upper bound of E
[
supγ∈Γ

∣∣ 1
n

∑n
i=1 εiγ(Zi)

∣∣]. To do so, we
shall apply the following lemma which is adapted from Lemma 6.1 in [11].

Lemma 5.3 (see Lem. 6.1 in [11]). Let Z1, . . . , Zn be independent random variables with values in some space
Z and let Γ be a class of real-valued functions on Z. Let (ε1, . . . , εn) be a Rademacher sequence independent of
(Z1, . . . , Zn). Define Rn a non-random constant such that

sup
γ∈Γ

‖γ‖n ≤ Rn. (5.4)

Then, for all S ∈ N
∗,

E

[
sup
γ∈Γ

∣∣∣∣∣ 1n
n∑
i=1

εiγ(Zi)

∣∣∣∣∣
]
≤ Rn

(
6√
n

S∑
s=1

2−s
√

ln [1 +N (2−sRn, Γ, ‖.‖n)] + 2−S
)
, (5.5)

where N(δ, Γ, ‖.‖n) stands for the δ-packing number of the set of functions Γ equipped with the metric induced
by the norm ‖.‖n.

From (5.1), we propose to apply a conditional version of Lemma 5.1, Lemma 5.2 and Lemma 5.3 to Γ = Fm,
(Z1, . . . , Zn) = (Y1|x1, . . . , Yn|xn) and γ(Zi) = fm(Yi|xi) so as to control supfm∈Fm |νn (−fm)| . On the one
hand, we see from (5.4) that we need an upper bound of supfm∈Fm ‖fm‖n. On the other hand, we see from (5.5)
that we need to bound the entropy of the set of functions Fm equipped with the metric induced by the norm
‖.‖n. Such bounds are provided by the two following lemmas.
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Let Mn > 0. Consider the event

T :=
{

max
i=1,...,n

|Yi| ≤Mn

}
and put

Bn =
1

aσ ∧ aπ

(
1 +

(Mn +Aμ)2

a2
σ

)
·

Lemma 5.4. On the event T , for all m ∈ N
∗,

sup
fm∈Fm

‖fm‖n ≤ Rn := 2Bn (1 +K(Aμ +Aσ)) · (5.6)

Proof. (See Sect. 5.2) �

Lemma 5.5. Let δ > 0 and m ∈ N
∗. On the event T , we have the following upper bound of the δ-packing

number of the set of functions Fm equipped with the metric induced by the norm ‖.‖n:

N (δ, Fm, ‖.‖n) ≤ (2p+ 1)
4B2
nK

2m2‖x‖2
max,n

δ2

(
1 +

8BnKAσ
δ

)K (
1 +

8Bn
δ

)K
.

Proof. (See Sect. 5.2) �

By using the upper bounds provided in Lemmas 5.4 and 5.5, we can apply Lemma 5.3 to get an upper bound
of EX

[
supfm∈Fm

∣∣ 1
n

∑n
i=1 εifm(Yi|xi)

∣∣]. It gives the following result.

Lemma 5.6. Let m ∈ N
∗. Consider (ε1, . . . , εn) a Rademacher sequence independent of (Y1, . . . , Yn). Then, on

the event T ,

EX

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

εifm(Yi|xi)
∣∣∣∣∣
]
≤ 18

√
K
Bn√
n
Δm, (5.7)

where
Δm := m‖x‖max,n lnn

√
K ln(2p+ 1) + 6 (1 +K(Aμ +Aσ)) .

Proof. (See proof of Lem. 5.9) �

Now, by using (5.7) and applying both Lemma 5.1 and Lemma 5.2 to Γ = Fm, (Z1, . . . , Zn) =
(Y1|x1, . . . , Yn|xn) and γ(Zi) = fm(Yi|xi), we get that for all m ∈ N

∗, for all t > 0, with PX -probability
greater than 1 − e−t,

sup
fm∈Fm

|νn (−fm)| = sup
fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

(fm(Yi|xi) − EX [fm(Yi|xi)])
∣∣∣∣∣

≤ E

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

fm(Yi|xi) − E (fm(Yi|xi))
∣∣∣∣∣
]

+ 2
√

2Rn

√
t

n

≤ 2E

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

εifm(Yi|xi)
∣∣∣∣∣
]

+ 2
√

2Rn

√
t

n

≤ 4Bn√
n

[
9
√
KΔm +

√
2(1 +K(Aμ +Aσ))

√
t
]
,

taking into account Definition (5.6) of Rn.
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5.2. Proof of Lemmas 5.4–5.6

Proofs of both Lemmas 5.4 and 5.5 need an upper bound of the uniform norm of the gradient of ln sψ for all
sψ ∈ S. Let us thus begin by providing such an upper bound.

Lemma 5.7. For finite mixture regression models as described in Section 2.1,

sup
x∈Rp

sup
ψ∈Ψ

∥∥∥∥∂ ln (sψ(.|x))
∂ψ

∥∥∥∥
∞

≤ G(·),

with

G : R 
→ R, y 
→ 1
aσ ∧ aπ

(
1 +

(|y| +Aμ)2

a2
σ

)
· (5.8)

Proof. Let sψ ∈ S with ψ = (μTk , σk, πk)k=1,...,K . For all x ∈ R
p and y ∈ R,

ln (sψ(y|x)) = ln

(
K∑
k=1

πk√
2πσk

exp

(
−1

2

(
y − μTk x

)2
σ2
k

))
= ln

(
K∑
k=1

fk(x, y)

)

where we put

fk(x, y) =
πk√
2πσk

exp

(
−1

2

(
y − μTk x

)2
σ2
k

)
≥ 0.

For all l = 1, . . . ,K, by using the fact that fl(x, y)/(
∑K

k=1 fk(x, y)) ≤ 1 and the fact that ψ belongs to the
bounded space Ψ defined by (2.1), we have∣∣∣∣∂ ln (sψ(y|x))

∂(μTl x)

∣∣∣∣ =

∣∣∣∣∣ fl(x, y)∑K
k=1 fk(x, y)

y − μTl x

σ2
l

∣∣∣∣∣ ≤ |y| +Aμ
a2
σ

,

∣∣∣∣∂ ln (sψ(y|x))
∂σl

∣∣∣∣
=

∣∣∣∣∣ 1∑K
k=1 fk(x, y)

(
−fl(x, y)

σl
+ fl(x, y)

(
y − μTl x

)2
σ3
l

)∣∣∣∣∣
≤ 1
aσ

(
1 +

(|y| +Aμ)
2

a2
σ

)
,∣∣∣∣∂ ln (sψ(y|x))

∂πl

∣∣∣∣ =
fl(x, y)

πl
∑K

k=1 fk(x, y)
≤ 1
aπ

·

Thus, for all y ∈ R,

sup
x∈Rp

sup
ψ∈Ψ

∣∣∣∣∂ ln (sψ(y|x))
∂ψ

∣∣∣∣ ≤ max

(
|y| +Aμ
a2
σ

,
1
aσ

(
1 +

(|y| +Aμ)
2

a2
σ

)
,

1
aπ

)

≤ max

(
1
aσ

(
1 +

(|y| +Aμ)
2

a2
σ

)
,

1
aπ

)

≤ 1
aπ ∧ aσ

(
1 +

(|y| +Aμ)
2

a2
σ

)
,

where we used the fact that 1 + θ2 ≥ θ for all θ ∈ R. �
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5.2.1. Proof of Lemma 5.4

Let m ∈ N
∗ and fm ∈ Fm. By (4.13), there exists sm ∈ Sm such that fm = − ln(sm/s0). For all x ∈ R

p,
denote by ψ(x) = (μTk x, σk, πk)k=1,...,K the parameters of the density sm(·|x). First applying Taylor’s inequality
and then Lemma 5.7 on the event T = {maxi=1,...,n |Yi| ≤Mn}, we get for all i = 1, . . . , n,

|fm(Yi|xi)|�T = |ln (sm(Yi|xi)) − ln (s0(Yi|xi))| �T

≤ sup
x∈Rp

sup
ϕ∈Ψ

∣∣∣∣∂ ln (sϕ(Yi|x))
∂ϕ

∣∣∣∣ ‖ψ(xi) − ψ0(xi)‖1 �T

≤ 1
aσ ∧ aπ

(
1 +

(|Yi| +Aμ)2

a2
σ

)
‖ψ(xi) − ψ0(xi)‖1 �T

≤ 1
aσ ∧ aπ

(
1 +

(Mn +Aμ)2

a2
σ

)
︸ ︷︷ ︸

:=Bn

‖ψ(xi) − ψ0(xi)‖1

≤ Bn

K∑
k=1

(∣∣μTk xi − μT0,kxi
∣∣+ |σk − σ0,k| + |πk − π0,k|

)
.

Now, since sm and s0 are assumed to belong to the bounded space Ψ defined by (2.1) and
∑K
k=1 πk = 1, we

obtain

|fm(Yi|xi)|�T ≤ Bn (2KAμ + 2KAσ + 2) ≤ 2Bn (1 +K(Aμ +Aσ)) ,

and thus ‖fm‖n �T ≤ 2Bn (1 +K(Aμ +Aσ)) .

5.2.2. Proof of Lemma 5.5

Let m ∈ N
∗ and fm ∈ Fm. By (4.13), there exists sm ∈ Sm such that fm = − ln(sm/s0). Introduce s′m

in S and put f ′
m = − ln(s′m/s0). Denote by (μTk , σk, πk)k=1,...,K and (μ′T

k , σ
′
k, π

′
k)k=1,...,K the parameters of

the densities sm and s′m respectively. First applying Taylor’s inequality and then Lemma 5.7 on the event
T = {maxi=1,...,n |Yi| ≤Mn}, we get for all i = 1, . . . , n,

|fm(Yi|xi) − f ′
m(Yi|xi)| �T = |ln (sm(Yi|xi)) − ln (s′m(Yi|xi))| �T

≤ sup
x∈Rp

sup
ϕ∈Ψ

∣∣∣∣∂ ln (sϕ(Yi|x))
∂ϕ

∣∣∣∣ ‖ψ(xi) − ψ′(xi)‖1 �T

≤ 1
aσ ∧ aπ

(
1 +

(|Yi| +Aμ)2

a2
σ

)
‖ψ(xi) − ψ′(xi)‖1 �T

≤ 1
aσ ∧ aπ

(
1 +

(Mn +Aμ)2

a2
σ

)
︸ ︷︷ ︸

:=Bn

‖ψ(xi) − ψ′(xi)‖1

≤ Bn

K∑
k=1

(∣∣∣μTk xi − μ′
k
T
xi

∣∣∣+ |σk − σ′
k| + |πk − π′

k|
)

≤ Bn

(
K∑
k=1

∣∣∣μTk xi − μ′
k
T
xi

∣∣∣+ ‖σ − σ′‖1 + ‖π − π′‖1

)
.
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Then, using (a+ b)2 ≤ 2(a2 + b2) and applying Cauchy–Schwarz inequality leads to

(fm(Yi|xi) − f ′
m(Yi|xi))2 �T ≤ 2B2

n

⎡⎣( K∑
k=1

∣∣∣μTk xi − μ′
k
T
xi

∣∣∣)2

+ (‖σ − σ′‖1 + ‖π − π′‖1)
2

⎤⎦ (5.9)

≤ 2B2
n

[
K

K∑
k=1

(
μTk xi − μ′

k
T
xi

)2

+ (‖σ − σ′‖1 + ‖π − π′‖1)
2

]
(5.10)

≤ 2B2
n

⎡⎢⎣K K∑
k=1

⎛⎝ p∑
j=1

μkjxij −
p∑
j=1

μ′
kjxij

⎞⎠2

+ (‖σ − σ′‖1 + ‖π − π′‖1)
2

⎤⎥⎦
and

‖fm − f ′
m‖2

n �T ≤ 2B2
n

⎡⎢⎢⎢⎢⎢⎣K
K∑
k=1

1
n

n∑
i=1

⎛⎝ p∑
j=1

μkjxij −
p∑
j=1

μ′
kjxij

⎞⎠2

︸ ︷︷ ︸
(a)

+ (‖σ − σ′‖1 + ‖π − π′‖1)
2

⎤⎥⎥⎥⎥⎥⎦ .

So, for all δ > 0, if (a) ≤ δ2/(4B2
n), ‖σ − σ′‖1 ≤ δ/(4Bn) and ‖π − π′‖1 ≤ δ/(4Bn), then ‖fm − f ′

m‖2
n ≤ δ2. To

bound (a), we write

(a) = Km2
K∑
k=1

1
n

n∑
i=1

⎛⎝ p∑
j=1

μkj
m
xij −

p∑
j=1

μ′
kj

m
xij

⎞⎠2

(5.11)

and we apply Lemma 5.9 below to μk/m = (μkj/m)j=1,...,p for all k = 1, . . . ,K. Since sm ∈ Sm, we have

p∑
j=1

∣∣∣μkj
m

∣∣∣ ≤ 1, (5.12)

and thus there exists a family B of (2p+ 1)4B
2
nK

2m2‖x‖2
max,n/δ

2
vectors of R

p such that for all k = 1, . . . ,K, for
all μk, there exists μ′

k ∈ B such that

1
n

n∑
i=1

⎛⎝ p∑
j=1

μkj
m
xij −

μ′
kj

m
xij

⎞⎠2

≤ δ2

4B2
nK

2m2
,

so that (a) ≤ δ2/(4B2
n). Moreover, since ‖σ‖1 =

∑K
k=1 |σk| ≤ KAσ and ‖π‖1 =

∑K
k=1 πk = 1, we get that, on

the event T ,

N (δ, Fm, ‖.‖n) ≤ card(B) N
(

δ

4Bn
, BK1 (KAσ), ‖.‖1

)
N

(
δ

4Bn
, BK1 (1), ‖.‖1

)
≤ (2p+ 1)

4B2
nK

2m2‖x‖2
max,n

δ2

(
1 +

8BnKAσ
δ

)K (
1 +

8Bn
δ

)K
· (5.13)

Remark 5.8. Let us point out that there may exist some data-sets for which the dependence on K might not
be optimal in (5.13). Indeed, notice that Sm is defined as the set of densities whose �1-norm

∑K
k=1

∑p
j=1 |μkj |

is less than m, whereas in (5.12) we only use the fact that
∑p
j=1 |μkj | ≤ m for all k = 1, . . . ,K, that is to
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say maxk=1,...,K

∑p
j=1 |μkj | ≤ m, which is a weaker assumption than

∑K
k=1

∑p
j=1 |μkj | ≤ m. To use the whole

assumption
∑K

k=1

∑p
j=1 |μkj | ≤ m, we should considered

∑K
k=1

∑p
j=1(μkj − μ′

kj)/mxij instead of
∑p

j=1(μkj −
μ′
kj)/mxij in (5.11). This could be possible if

∑K
k=1 |μTk xi − μ′

k
T
xi| was replaced by |

∑K
k=1 μ

T
k xi − μ′

k
T
xi| in

the right-hand side of (5.9). This would require to consider the single parameter
∑K

k=1 μ
T
k x in place of the K

parameters (μT1 x, . . . , μ
T
Kx) in the parameter ψ(x), but the quantity

∑K
k=1 μ

T
k x does not appear naturally in

the expression of the density sψ(.|x) and it seems thus difficult to differentiate ln sψ(.|x) with respect to it.
Yet, if we had managed to do that, this would have avoided to use Cauchy–Schwarz inequality which leads to
an extra-K factor in (5.10). So, we might think that the term (2p + 1)4B

2
nK

2m2‖x‖2
max,n/δ

2
in (5.13) could be

improved by (2p+ 1)4B
2
nKm

2‖x‖2
max,n/δ

2
. Then, taking the square root of the entropy number in (5.5), the term

m‖x‖max,n lnn
√
K ln(2p+ 1) in (4.20) would be replaced by m‖x‖max,n lnn

√
ln(2p+ 1), and the lower bound

of the regularization parameter λ in (4.7) would be proportional to
√
K instead of K.

Lemma 5.9. Let δ > 0 and (xij)i=1,...,n j=1,...,p ∈ R
np. There exists a family B of (2p+ 1)‖x‖

2
max,n/δ

2
vectors

of R
p such that for all β ∈ R

p checking ‖β‖1 ≤ 1, there exists β′ ∈ B such that

1
n

n∑
i=1

⎛⎝ p∑
j=1

(
βj − β′

j

)
xij

⎞⎠2

≤ δ2. (5.14)

Proof. Consider the set of functions F = {f0, f+
1 , . . . , f

+
p , f

−
1 , . . . , f

−
p } defined by⎧⎨⎩

f0 ≡ 0,
f+
j : R

p 
→ R, x = (x1, . . . , xp) 
→ xj , j = 1, . . . , p,
f−
j : R

p 
→ R, x = (x1, . . . , xp) 
→ −xj , j = 1, . . . , p,

and the convex hull CF of F . Let δ > 0. Applying Lemma 2.6.11 of [22] to F which is of cardinal 2p + 1, we
deduce that there exists a packing family G ⊂ CF of cardinal (2p+ 1)(diamF/δ)2 for (CF , ‖.‖n) where diamF is
the diameter of F for ‖.‖n. Here, diamF = ‖x‖max,n .

Now, let β ∈ R
p such that ‖β‖1 ≤ 1 and introduce the function

fβ : R
p 
→ R, x 
→

p∑
j=1

βjxj . (5.15)

For all x ∈ R
p,

fβ(x) =

⎛⎝ ∑
j:βj>0

|βj |f+
j (x) +

∑
j:βj<0

|βj |f−
j (x) +

⎛⎝1 −
∑
j:βj �=0

|βj |

⎞⎠ f0

⎞⎠,
with

∑
j:βj>0 |βj | +

∑
j:βj<0 |βj | +

(
1 −

∑
j:βj �=0 |βj |

)
= 1,

(
1 −

∑
j:βj �=0 |βj |

)
≥ 0 and |βj | ≥ 0 for all j =

1, . . . , p. So, fβ belongs to CF and there exists f ′
β in G such that ‖fβ − f ′

β‖n ≤ δ, that is to say

1
n

n∑
i=1

(
fβ(xi) − f ′

β(xi)
)2 ≤ δ2. (5.16)

Since f ′
β belongs to CF , there exist coefficients

(
α0, α

+
1 , . . . , α

+
p , α

−
1 , . . . , α

−
p

)
such that f ′

β = α0f0+
∑p
j=1 α

+
j f

+
j +

α−
j f

−
j , and for all x ∈ R

p,

f ′
β(x) = α0f0(x) +

p∑
j=1

α+
j f

+
j (x) + α−

j f
−
j (x) =

p∑
j=1

(α+
j − α−

j )xj =
p∑
j=1

β′
jxj (5.17)
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if we put β′
j := α+

j − α−
j for all j = 1, . . . , p. For each function f ′

β, we thus define a vector β′ ∈ R
p associated

to f ′
β, which leads to the construction of a family B of (2p + 1)‖x‖

2
max,n/δ

2
vectors of R

p. Inequality (5.14) is
obtained from (5.16)–(5.17). �

5.2.3. Proof of Lemma 5.6

Let m ∈ N
∗. From Lemma 5.4, on the event T , supfm∈Fm ‖fm‖n is bounded by

Rn := 2Bn (1 +K(Aμ +Aσ)) . (5.18)

Besides, from Lemma 5.5, on the event T , for all S ∈ N
∗,

S∑
s=1

2−s
√

ln [1 +N (2−sRn, Fm, ‖.‖n)] ≤
S∑
s=1

2−s
√

ln [2N (2−sRn, Fm, ‖.‖n)]

≤
S∑
s=1

2−s
[√

ln 2 +
2s+1BnKm‖x‖max,n

Rn

√
ln(2p+ 1)

+

√
K ln

[(
1 +

2s+3BnKAσ
Rn

)(
1 +

2s+3Bn
Rn

)]]
. (5.19)

Notice from (5.18) that Rn ≥ 2Bnmax(KAσ, 1). Moreover 1 ≤ 2s+2 and 2−s
√
s ≤ (

√
e/2)s for all s ∈ N

∗. So,
we get from (5.19) that

S∑
s=1

2−s
√

ln [2N (2−sRn, Fm, ‖.‖n)]

≤
S∑
s=1

2−s
[√

ln 2 +
2s+1BnKm‖x‖max,n

Rn

√
ln(2p+ 1) +

√
K ln [(2s+3) × (2s+3)]

]

≤
S∑
s=1

2−s
[√

ln 2 +
2s+1BnKm‖x‖max,n

Rn

√
ln(2p+ 1) +

√
K
√

2(s+ 3) ln 2
]

≤ 2BnKm‖x‖max,n

Rn

√
ln(2p+ 1)S +

√
K
√

2 ln 2
S∑
s=1

2−s
√
s+

√
ln 2(1 +

√
6K)

≤ 2BnKm‖x‖max,n

Rn

√
ln(2p+ 1)S +

√
ln 2

(
1 +

√
K

(
√

6 +
√

2e
2 −

√
e

))

≤ 2BnKm‖x‖max,n

Rn

√
ln(2p+ 1)S +

√
K ln 2

(
1 +

√
6 +

√
2e

2 −
√

e

)
, (5.20)

and we get from (5.5) and (5.20) that for all S ∈ N
∗,

EX

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

εifm(Yi|xi)
∣∣∣∣∣
]

≤ Rn

[
6√
n

(
2BnKm‖x‖max,n

Rn

√
ln(2p+ 1)S +

√
K ln 2

(
1 +

√
6 +

√
2e

2 −
√

e

))
+ 2−S

]
. (5.21)
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Let us now choose S = lnn/ ln 2 so that the two terms depending on S in (5.21) are of the same order. In
particular, for this value of S, 2−S ≤ 1/n, and we deduce from (5.21) and (5.18) that

EX

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

εifm(Yi|xi)
∣∣∣∣∣
]

≤ 12BnKm‖x‖max,n√
n

√
ln(2p+ 1)

lnn
ln 2

+ 2Bn (1 +K(Aμ +Aσ))

(
6
√

ln 2

(
1 +

√
6 +

√
2e

2 −√
e

) √
K√
n

+
1
n

)

≤ 18BnKm‖x‖max,n√
n

√
ln(2p+ 1) lnn+ 2

√
K√
n
Bn (1 +K(Aμ +Aσ))

(
6
√

ln 2

(
1 +

√
6 +

√
2e

2 −
√

e

)
+ 1

)

≤ 18
√
K
Bn√
n

[
m‖x‖max,n

√
K ln(2p+ 1) lnn+ 6 (1 +K(Aμ +Aσ))

]
.
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