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ON RY-VALUED PEACOCKS

FrANcIs HIRSCH! AND BERNARD ROYNETTE?

Abstract. In this paper, we consider R%-valued integrable processes which are increasing in the convex
order, i.e. R%-valued peacocks in our terminology. After the presentation of some examples, we show
that an R%-valued process is a peacock if and only if it has the same one-dimensional marginals as
an R%valued martingale. This extends former results, obtained notably by Strassen [Ann. Math. Stat.
36 (1965) 423-439], Doob [J. Funct. Anal. 2 (1968) 207-225] and Kellerer [Math. Ann. 198 (1972)
99-122].
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1. INTRODUCTION

1.1. Terminology

First we fix the terminology. In the sequel, d denotes a fixed integer and R is equipped with a norm which
is denoted by | - |.

We say that two Ré-valued processes: (X;, t > 0) and (Y;, t > 0) are associated, if they have the same
one-dimensional marginals, i.e. if:

(

vi>o0, x,"y,

A process which is associated with a martingale is called a 1-martingale.
An R%valued process (X;, t > 0) will be called a peacock if:

(i) it is integrable, that is:
Vi >0, E[|X:] < oo

(ii) it increases in the convex order, meaning that, for every convex function 1 : R? — R, the map:
t>0— E[p(Xy)] € (—00, +o0]
is increasing.
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This terminology was introduced in [5]. We refer the reader to this monograph for an explanation of the origin
of the term: “peacock”, as well as for a comprehensive study of this notion in the case d = 1.

Actually, it may be noted that, in the definition of a peacock, only the family (u;, ¢t > 0) of its one-dimensional
marginals is involved. This makes it natural, in the following, to also call a peacock, a family (u:, t > 0) of
probability measures on R? such that:

(i) Vvt>0, /\x\ we(dz) < oo;

(ii) for every convex function 1 : R? — R, the map:

120 — / (x) 1e(d) € (—00, +00]

is increasing.

Likewise, a family (u:, t > 0) of probability measures on R? and an R%valued process (Y;, ¢ > 0) will be said
to be associated if, for every t > 0, the law of Y; is ue, d.e. if (g, t > 0) is the family of the one-dimensional
marginals of (Y, ¢ > 0).

Obviously, the above notions also are meaningful if one considers processes and families of measures indexed
by a subset of Ry (for example N) instead of R...

It is an easy consequence of Jensen’s inequality that an R?-valued process which is a l-martingale, is a
peacock. So, a natural question is whether the converse holds.

1.2. Cased =1

A remarkable result due to Kellerer [6] states that, actually, any R-valued process which is a peacock, is a
1l-martingale. More precisely, Kellerer’s result states that any R-valued peacock admits an associated martingale
which is Markovian.

Two more recent results now complete Kellerer’s theorem.

(i) Lowther [7] states that if (u¢, ¢ > 0) is an R-valued peacock such that the map: ¢ — pu; is weakly
continuous (i.e. for any R-valued, bounded and continuous function f on R, the map: t — [ f(z) pi(dx)
is continuous), then (p:, t > 0) is associated with a strongly Markovian martingale which moreover is
“almost-continuous” (see [7] for the definition);

(ii) in a previous paper [4], we presented a new proof of the above mentioned theorem of Kellerer. Our method,
which is inspired from the “Fokker—Planck Equation Method” ([5], Sect. 6.2, p. 229), then appears as a
new application of M. Pierre’s uniqueness theorem for a Fokker—Planck equation ([5], Thm. 6.1, p. 223).
Thus, we show that a martingale which is associated to an R-valued peacock, may be obtained as a limit of
solutions of stochastic differential equations. However, we do not obtain that such a martingale is Markovian.

1.3. Cased > 1

Concerning the case R with d > 1, and even much more general spaces, we would like to mention the
following three important papers.

(i) in [1], Cartier et al. study the case of two probability measures (u1,p2) on a metrizable convex com-
pact K of a locally convex space. They prove, using the Hahn—Banach theorem, that, if (u1,ue) is
a K-valued peacock (indexed by {1,2}), then there exists a Markovian kernel P on K such that:
0(dxy,dxs) := pi(dey) P(zq, dag) is the law of a K-valued martingale (Y7, Ys) associated to (1, p2);

(ii) in [8], Strassen extends the Cartier—Fell—Meyer result to R%valued peacocks without making the assump-
tion of compact support. Then he proves that, if (i, n > 0) is an R-valued peacock (indexed by N), there
exists an associated martingale which is obtained as a Markov chain;
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(iii) in [3], Doob studies, in a very general extended framework, peacocks indexed by R, and taking their values
in a fixed compact set. In particular, he proves that they admit associated martingales. Note that in [3],
the Markovian character of the associated martingales is not considered.

1.4. Organization

The remainder of this paper is organised as follows:

— in Section 2, we present some basic facts concerning the R%-valued peacocks and we describe some examples,
thus extending results of [5];

— in Section 3, starting from Strassen’s theorem, we prove that a family (u¢, t > 0) of probability measures on
R?, is associated to a right-continuous martingale, if and only if, (us, ¢t > 0) is a peacock such that the map:
t — py is weakly right-continuous on Ry ;

— in Section 4, by approximation from the previous result, we extend this result to the case of general R%valued
peacocks.

2. GENERALITIES, EXAMPLES

2.1. Notation

In the sequel, d denotes a fixed integer, R is equipped with a norm which is denoted by | - |, and we adopt
the terminology of Section 1.1.

We also denote by M the set of probability measures on R%, equipped with the topology of weak convergence
(with respect to the space C,(R?) of R-valued, bounded, continuous functions on R?). We denote by M the
subset of M consisting of measures 1 € M such that [ |z| p(dz) < co. My is also equipped with the topology
of weak convergence.

C.(R%) denotes the space of R-valued continuous functions on R¢ with compact support, and C.f (R9) is the
subspace consisting of all the nonnegative functions in C,(R%).

2.2. Basic facts

Proposition 2.1. Let (X¢, t > 0) be an R¥-valued integrable process. Then (X, t > 0) is a peacock if (and
only if) the map: t — E[p(X})] is increasing, for every function ¢ : R — R which is convex, of C™ class
and such that the derivative ' is bounded on R?.

Proof. Let ¢ : RY — R be a convex function. For every a € R%, there exists an affine function h, such that:
Vo € R, p(x) > ho(z) and  o(a) = ha(a).
Let {an; n > 1} be a countable dense subset of R?. We set:
Vn>1, Yu(x)= sup hg,(z).

1<j<n
Then:
vz € RY, liTm T Pn(z) = Y(2).

The functions 1, are convex and Lipschitz continuous.
Let ¢ be a nonnegative function, of C*° class, with compact support and such that [ ¢(z) dz = 1. We set,
for n,p > 1,

Ve € R, () = / ¥ (w - %y) 6(y) dy.

Clearly, 1y, p is convex, of C* class and Lipschitz continuous. Consequently, its derivative is bounded on R4,
Moreover, lim, ., ¥, , = 95, uniformly on R?.
The desired result now follows directly. O

The next result will be useful in the sequel.
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Proposition 2.2. Let (X, t > 0) be an R%-valued peacock. Then:

1. the map: t — E[X}] is constant;
2. the map: t — E[|Xy|] is increasing, and therefore, for every T >0,

sup E[|X¢[] = E[[Xr[] < oo;
0<t<T

3. for every T >0, the random variables (X¢; 0 <t < T') are uniformly integrable.

Proof. Properties 1 and 2 are obvious.
If ¢ >0,
2] 1z >ey < (2]2] = o) F

As the function z — (2|z] — ¢)* is convex,

sup E [|X¢| 1qix,>1] S E[(2]1X7] — )]
t€[0,T)

Now, by dominated convergence,

lim E[(2|Xz| - )] = 0.

c——+o0

Hence, property 3 holds. g
2.3. Examples
The following examples are given in [5] for d = 1. The proofs given below are essentially the same as in [5].

Proposition 2.3. Let X be a centered R -valued random variable. Then (t X, t > 0) is a peacock.
Proof. Let ¢ : RY — R be a convex function, and 0 < s < t. Then,
5 S
s X) < (1-2) 0(0) + 5 p(t X).
Since X is centered, by Jensen’s inequality:
$(0) = ¢ (Eft X]) < E[y(t X)].
Hence,
5 5
Efw(s X)] < (1- ) Bt X)] + 7 E[p(t X)) = E[u(t X). O

Proposition 2.4. Let (X;, t > 0) be a family of centered, R*-valued, Gaussian variables. We denote by C(t) =
(ci,j(t)i<i,j<d the covariance matriz of X¢. Then, (X, t > 0) is a peacock if and only if the map: t — C(t)
1s increasing in the sense of quadratic forms, i.e.:

Va = (a1,...,aq) € RY t — E ¢ij(t) aza; s increasing.
1<i,j<d

Proof.

(1) For every a € R, the function:

d 2
zeRY — E a; a; T; Tj = E a; T;
i=1

1<i,j<d

is convex. This entails that, if (X, ¢ > 0) is a peacock, then the map: ¢ — C(t) is increasing in the sense
of quadratic forms.
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(2) Conversely, suppose that the map: ¢t — C'(¢) is increasing in the sense of quadratic forms. By the proof of [5],
Theorem 2.16, page 132, there exists a centered R?-valued Gaussian process: (I3 = (I't4,...,Laz), t > 0),
such that:

Vs, t >0, V1 <i,j<d, E[Fi,st,t] :civj(s/\t).

Therefrom we deduce that (I}, t > 0) is a martingale which is associated to (X, ¢ > 0), and consequently,
(X, t > 0) is a peacock. O

Corollary 2.5. Let A be a d x d matriz. We consider the R%-valued Ornstein— Uhlenbeck process (Uz, t > 0),
defined as (the unique) solution, started from 0, of the SDE:

dU; =dB, + AU, dt
where (B, t > 0) denotes a d-dimensional Brownian motion. Then, (U, t > 0) is a peacock.

Proof. One has:
t
Ui = / exp((t —s) A) dBs.
0

Hence, for every t > 0, U; is a centered, R%valued Gaussian variable whose covariance matrix is:

ct) = /0 exp(s A) exp(s A*) ds

where A* denotes the transpose matrix of A. Therefrom it is clear that the map: ¢ — C/(¢) is increasing in the
sense of quadratic forms, and Proposition 2.4 applies. O

Proposition 2.6. Let (M, t > 0) be an R¥-valued, right-continuous martingale such that:

vI'>0, E [ sup Mt] < 00.
0<t<T

Then,

1. (Xt :

2. <)Z't = / (Mg — My) ds; t > 0> s a peacock.
0

1t
n / Mg ds; t > O) s a peacock;
0
t

Proof. Using Proposition 2.1, we may use the proof of [5], Theorem 1.4, page 26. For the convenience of the
reader, we reproduce this proof below.

(1) Let ¢ : R — R be a convex function, of C*° class and such that the derivative ¢’ is bounded on R<.
Setting:

t
M, = / s dM.,
0
one has, by integration by parts:
X, =M; —t"'M, and dX,=t"2M, dt.
Denoting by F; the o-algebra generated by {M,; 0 < u < s}, one gets, for 0 < s < ¢,

]E[Xt | f@] = Xs + (571 - til) M\s-
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Consequently, by Jensen’s inequality,
]E[w(Xt)] 2 ]E[w(Xe + (8_1 - t_l) ]/\4\3)]

Using again the fact that 1 is convex, one obtains:

—

E[(X1)] = E[(Xo)] + (s7' =t E[y/(X,) - M.

Now,

1/)/(Xs) M, = /OS ufqu”(Xu)(HuaHu) du + /Osu,l//(Xu) -dM,

and therefore

—

E[p(X)] — E[p(X,)] > (s7' =t ) E[y'(X) - My] >0,

which, by Proposition 2.1, yields the desired result.
Let 1 be as above. One may suppose that My = 0. One has, for 0 < s <,

E[X; | F] = X, + (t — ) M.
Consequently, by Jensen’s inequality,
E[(Xy)] 2 B(X. + (t — ) M),
Using again the fact that v is convex, one obtains:
E[$(X0)] > Ep(X)] + (t - ) B[Y/(X.) - M.
Now,

WKL) M, = /0 () (Mo, M) du + /0 (X - dM,

and therefore B B B
E[(Xe)] — E[(Xs)] > (t - s) E[¢'(Xs) - Ms] >0,

which, by Proposition 2.1, yields the desired result. O

3. RIGHT-CONTINUOUS PEACOKS

In this section, we shall show that any right continuous peacock admits an associated right-continuous mar-
tingale. For this, we start from Strassen’s theorem, which we now recall.

Theorem 3.1 (Strassen [8], Thm. 8). Let (un, n € N) be a sequence in M. Then (un, n € N) is a peacock if
and only if there exists a martingale (M, n € N) which is associated to (fin, n € N).

We shall extend this theorem to right-continuous peacocks indexed by R . In the case d = 1, the following
theorem is proven in [4], by a quite different method. In particular, in [4], we do not use Strassen’s theorem,
nor the Hahn—Banach theorem, but an explicit approximation by solutions of SDE’s.

Theorem 3.2. Let (g, t > 0) be a family in M. Then the following properties are equivalent:

(1)

there exists a right-continuous martingale associated to (ug, t > 0);

(i3) (pe, t>0) is a peacock and the map:

t>0— e M

1s right-continuous.
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Proof.

(1) We first assume that property (i) is satisfied. Then, the fact that (u:, t > 0) is a peacock follows classically
from Jensen’s inequality. Let (M, t > 0) be a right-continuous martingale associated to (u:, ¢t > 0). Then,
if f € Cp(R?), dominated convergence yields that, for any ¢ > 0,

i [ @) (o) =l BIFOL)] = BP0 = [ £0) pelc),
Therefore, the map:
t>0— € M

is right-continuous, and property (ii) is satisfied.
(2) Conversely, we now assume that property (ii) is satisfied. For every n € N, we set:

()—/,Lkzn, ke N.

By Strassen’s theorem (Thm. 3.1), there exists a martingale (M,En), k € N) which is associated to (M](Cn), ke
N). We set:

Xt(n) = M,E") if t=k2"" and Xt(n) = 0 otherwise.

Consequently, the law of Xt(") is g ift € {k27"; k € N}, and is 6 (the Dirac measure at 0) if t & {k27"; k €
N}.
Note that, due to the lack of uniqueness in Strassen’s theorem, the law of (X(n) »» k € N) may not be the
same as the law of (X(nJr,}), k e N).
Only the one-dimensional marginals are identical.
(3) Let D = {k 27" k,n € N} the set of dyadic numbers. For every n € N, for every r > 1 and 7, =
(t1,t2,...,t.) € D", we denote by IT ") the law of (Xt(ln), ce Xt(?))7 a probability on (R%)".

Lemma 3.3. For every 7. € D", the set of probability measures: {Hﬁ:’"); n € N} s tight.

Proof. We set, for x = (z*,...,2") € (RD", |z|, = Z;Zl |z7|. Then, for p > 0,
rn rn n ]' -
(el 2 p) < pn< (I],) ZEIX( DA

since, by point (2), the law of Xt(jn) is either ju;, or 6. Hence,

lim sup I1 T”)(|x|r >p)=0. O
P >0

(4) As a consequence of the previous lemma, and with the help of the diagonal procedure, there exists a
subsequence (n;);>o such that, for every 7, € D", the sequence of probabilities on (R9)": (Hg’"’), 1 >0),

(r)

weakly converges to a probability which we denote by II;.’. We remark that, for [ large enough, the law

of Xt(jnl) is p¢;. Then, there exists an R?-valued process (X;, t € D) such that, for every r» > 1 and every
Tr = (t1,...,t,) € D", the law of (Xy,,..., X¢,) is Hﬁ:), and Ht(l) = p for every t € D.
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Lemma 3.4. The process (X, t € D) is a martingale associated to (pt, t € D).

Proof. As we have already seen, the process (X;, ¢t € D) is associated to (u¢, t € D). We now prove that it is a
martingale. We set:

-1
Vp >0, VxeRY, op(x) = (1 Vv %) T

Then,
©p € C(RERY) and g, (x) = for |z < p.

Let 0 <51 <83 <...<8. <s<tbeelements of D, and let f € C,((R?)"). We set: || f ||oo = sup{|f(z)]; = €
(R4}, Then, for I large enough,

E[f (X, X)) XM = BIF(X, ..., X)X (™)),
On the other hand,

ELf (Xars -5 Xo,) @p(X)] = E[f (Xars - X)) Xel| < || Fllow pte (2] L(ja|2py) , for every p > 0,

ELF(XE, 0, XY p(XM)] = (XG0, X)X < oo e (12] 1 ga1293)
for every [ and every p > 0,
and likewise, replacing ¢t by s. Moreover,
Jim E[F(XG0, L X0) 0p (X)) = B[S (Xays 0 X, ) (X)),

and likewise, replacing ¢t by s. Finally, we obtain, for p > 0,

[ELf(Xsiseoos Xo) Xo] = E[f (Xops -, X)) Xl S 2 Flloo [ (J2] Lgaizpy) + s (J2] Lgai2py)]
and the desired result follows, letting p go to co. O
(5) By the classical theory of martingales (see, for example, [2]), almost surely, for every ¢ > 0,

M,= lim X,
s—t,s€D,s>t

is well defined, and (M, ¢ > 0) is a right-continuous martingale. Besides, since, by hypothesis, the map:
t >0 — p € M is right-continuous, we deduce from Lemma 3.4 that this martingale (M, ¢t > 0) is
associated to (p, t > 0). O
4. THE GENERAL CASE
Theorem 3.2 shall now be extended, by approximation, to the general case.
Theorem 4.1. Let (g, t > 0) be a family in M. Then the following properties are equivalent:

(i) there exists a martingale associated to (pt, t > 0);
(i) (pt, t > 0) is a peacock.
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Proof. Let (ut, t > 0) be a peacock.

Lemma 4.2. There exists a countable set A C Ry such that the map:
t— € M
is continuous at any s ¢ A.
Proof. Let x : R4 — R, be defined by:
X(@) =1 —lz))" = AV |z]) — |zl

Then x € Cf(RY) and y is the difference of two convex functions. We set: x,, () = m? x(m ), and we define
the countable set H by:

T
H= Zajxm(ac—qj); reN,meN, a; €Qy, ¢; € Q?
§=0

For h € 'H, the function: t — p;(h) is the difference of two increasing functions, and hence admits a countable
set Ay of discontinuities. We set A = J, .4, An. Then A is a countable subset of Ry, and t — pu(h) is
continuous at any s & A, for every h € H. Now, it is easy to see that H is dense in Cf (R?) in the following
sense: for every ¢ € CF(R?), there exist a compact set K C R? and a sequence (h,,),>0 C H such that:

Vn, Supph, C K and lim h, = ¢ uniformly.

n—oo
Consequently, t — pi; is vaguely continuous at any s € A, and, since measures ji; are probabilities, t — p; is

also weakly continuous at any s ¢ A. O

We may write A = {d;; j € N}. For n € N, we denote by (kl(n), [ > 0) the increasing rearrangement of the
set:
{k27™" ke N} U{d;; 0 <j <n}.

We define (/Jin), t>0) by:

£ ¢ N AC))
(m) o~k L ~ (n) p(m)
e =y o M T e, TS [’“z »’fm]
+1 M H1 M

Lemma 4.3. The following properties hold:

1. for every n > 0, (uin), t > 0) is a peacock and the map: t — ME") € M is continuous;

2. for anyt >0, sup{,ugn)(\x\); n € N} < oo;
3. for any t >0, the set {ME”); n € N} is uniformly integrable;
4. fort >0, limy, . ui") = in M.

Proof. Properties 1 and 4 are clear by construction. Property 2 (resp. property 3) follows directly from property 2
(resp. property 3) in Proposition 2.2. O

By Theorem 3.2, there exists, for each n, a right-continuous martingale (Mt(n), t > 0) which is associated to
(ME”), t > 0). For any » € N and 7, = (t1,...,t.) € R, we denote by Hﬁ:’n) the law of (Mt(ln), . .,Mt(rn)), a
probability measure on (R9)".
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Lemma 4.4. For every 7. € R',, the set of probability measures: {HTT n), n € N} is tight.

Proof. As in Lemma 3.3, for p > 0,
(|2, > p) ZW (1),

and by property 2 in Lemma 4.3,

lim sup IT T”)(|x|r >p) =0.
P n>0

453

O

Let now U be an ultrafilter on N, which refines Fréchet’s filter. As a consequence of the previous lemma, for

every r € N and every 7. € R}, librln Hﬁ:’") exists for the weak convergence and we denote this limit by Hﬁ:).

By property 4 in Lemma 4.3, Ht(l)

= p. There exists a process (My, t > 0) such that, for every r € N and every

Tr = (t1,...,t.) € R, the law of (My,,..., My, ) is Hﬁ:). In particular, this process (My, ¢t > 0) is associated to

(:utv t=> O)

Lemma 4.5. The process (M, t > 0) is a martingale.

Proof. The proof is quite similar to that of Lemma 3.4, but we give the details for the sake of completeness.

We recall the notation:

-1
Vp >0, Va eRY, op(x) = (1\/ j;) T

Let 0 <83 <83 <...<s.<s<tbeelements of Ry, and let f € Cp((R?)"). We set: || f ||oo = sup{|f(z)|;

(R4}, Then, for every n,
E[F(MGY, ., M) MM = B[F(MEY, .. M) M),
On the other hand,

BLf (M, - -, My,) @p(My)] = E[f (M, ;.. M, ) Myl < | f llow 1t (J2] Ljoyzpy) » for every p >0,

E[f(M™,...,M™) op(M{™)] - E[f(M™, ..., M) M)

s1 0

< Flloo 8™ (2] Lgjaispy) »

for every n and every p > 0,

and likewise, replacing ¢t by s. Moreover,
mE[f (ML, M) p(M)] = E[f (Mi, .., Ms,) op(M2)],

Sp

and likewise, replacing t by s. Finally, we obtain, for p > 0,
E[f (Xsyseo s Xo,) Xe] = E[f(Xsy, oo, X)) Xo]| <2 flloo bup { (|33|1{\x\>p}) +:“s (‘x‘1{|z|>p})}

and, by property 3 in Lemma 4.3, the desired result follows, letting p go to co.

This lemma completes the proof of Theorem 4.1.
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