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ON Rd-VALUED PEACOCKS
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Abstract. In this paper, we consider Rd-valued integrable processes which are increasing in the convex
order, i.e. Rd-valued peacocks in our terminology. After the presentation of some examples, we show
that an Rd-valued process is a peacock if and only if it has the same one-dimensional marginals as
an Rd-valued martingale. This extends former results, obtained notably by Strassen [Ann. Math. Stat.
36 (1965) 423–439], Doob [J. Funct. Anal. 2 (1968) 207–225] and Kellerer [Math. Ann. 198 (1972)
99–122].
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1. Introduction

1.1. Terminology

First we fix the terminology. In the sequel, d denotes a fixed integer and Rd is equipped with a norm which
is denoted by | · |.

We say that two Rd-valued processes: (Xt, t ≥ 0) and (Yt, t ≥ 0) are associated, if they have the same
one-dimensional marginals, i.e. if:

∀t ≥ 0, Xt
(law)
= Yt.

A process which is associated with a martingale is called a 1-martingale.
An Rd-valued process (Xt, t ≥ 0) will be called a peacock if:

(i) it is integrable, that is:
∀t ≥ 0, E[|Xt|] <∞;

(ii) it increases in the convex order, meaning that, for every convex function ψ : Rd −→ R, the map:

t ≥ 0 −→ E[ψ(Xt)] ∈ (−∞,+∞]

is increasing.
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This terminology was introduced in [5]. We refer the reader to this monograph for an explanation of the origin
of the term: “peacock”, as well as for a comprehensive study of this notion in the case d = 1.

Actually, it may be noted that, in the definition of a peacock, only the family (μt, t ≥ 0) of its one-dimensional
marginals is involved. This makes it natural, in the following, to also call a peacock, a family (μt, t ≥ 0) of
probability measures on Rd such that:

(i) ∀t ≥ 0,
∫

|x| μt(dx) <∞;

(ii) for every convex function ψ : Rd −→ R, the map:

t ≥ 0 −→
∫
ψ(x) μt(dx) ∈ (−∞,+∞]

is increasing.

Likewise, a family (μt, t ≥ 0) of probability measures on Rd and an Rd-valued process (Yt, t ≥ 0) will be said
to be associated if, for every t ≥ 0, the law of Yt is μt, i.e. if (μt, t ≥ 0) is the family of the one-dimensional
marginals of (Yt, t ≥ 0).

Obviously, the above notions also are meaningful if one considers processes and families of measures indexed
by a subset of R+ (for example N) instead of R+.

It is an easy consequence of Jensen’s inequality that an Rd-valued process which is a 1-martingale, is a
peacock. So, a natural question is whether the converse holds.

1.2. Case d = 1

A remarkable result due to Kellerer [6] states that, actually, any R-valued process which is a peacock, is a
1-martingale. More precisely, Kellerer’s result states that any R-valued peacock admits an associated martingale
which is Markovian.

Two more recent results now complete Kellerer’s theorem.

(i) Lowther [7] states that if (μt, t ≥ 0) is an R-valued peacock such that the map: t −→ μt is weakly
continuous (i.e. for any R-valued, bounded and continuous function f on R, the map: t −→ ∫

f(x) μt(dx)
is continuous), then (μt, t ≥ 0) is associated with a strongly Markovian martingale which moreover is
“almost-continuous” (see [7] for the definition);

(ii) in a previous paper [4], we presented a new proof of the above mentioned theorem of Kellerer. Our method,
which is inspired from the “Fokker−Planck Equation Method” ([5], Sect. 6.2, p. 229), then appears as a
new application of M. Pierre’s uniqueness theorem for a Fokker−Planck equation ([5], Thm. 6.1, p. 223).
Thus, we show that a martingale which is associated to an R-valued peacock, may be obtained as a limit of
solutions of stochastic differential equations. However, we do not obtain that such a martingale is Markovian.

1.3. Case d ≥ 1

Concerning the case Rd with d ≥ 1, and even much more general spaces, we would like to mention the
following three important papers.

(i) in [1], Cartier et al. study the case of two probability measures (μ1, μ2) on a metrizable convex com-
pact K of a locally convex space. They prove, using the Hahn−Banach theorem, that, if (μ1, μ2) is
a K-valued peacock (indexed by {1, 2}), then there exists a Markovian kernel P on K such that:
θ(dx1, dx2) := μ1(dx1)P (x1, dx2) is the law of a K-valued martingale (Y1, Y2) associated to (μ1, μ2);

(ii) in [8], Strassen extends the Cartier−Fell−Meyer result to Rd-valued peacocks without making the assump-
tion of compact support. Then he proves that, if (μn, n ≥ 0) is an Rd-valued peacock (indexed by N), there
exists an associated martingale which is obtained as a Markov chain;
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(iii) in [3], Doob studies, in a very general extended framework, peacocks indexed by R+ and taking their values
in a fixed compact set. In particular, he proves that they admit associated martingales. Note that in [3],
the Markovian character of the associated martingales is not considered.

1.4. Organization

The remainder of this paper is organised as follows:
– in Section 2, we present some basic facts concerning the Rd-valued peacocks and we describe some examples,

thus extending results of [5];
– in Section 3, starting from Strassen’s theorem, we prove that a family (μt, t ≥ 0) of probability measures on

Rd, is associated to a right-continuous martingale, if and only if, (μt, t ≥ 0) is a peacock such that the map:
t −→ μt is weakly right-continuous on R+;

– in Section 4, by approximation from the previous result, we extend this result to the case of general Rd-valued
peacocks.

2. Generalities, examples

2.1. Notation

In the sequel, d denotes a fixed integer, Rd is equipped with a norm which is denoted by | · |, and we adopt
the terminology of Section 1.1.

We also denote by M the set of probability measures on Rd, equipped with the topology of weak convergence
(with respect to the space Cb(Rd) of R-valued, bounded, continuous functions on Rd). We denote by Mf the
subset of M consisting of measures μ ∈ M such that

∫ |x| μ(dx) <∞. Mf is also equipped with the topology
of weak convergence.
Cc(Rd) denotes the space of R-valued continuous functions on Rd with compact support, and C+

c (Rd) is the
subspace consisting of all the nonnegative functions in Cc(Rd).

2.2. Basic facts

Proposition 2.1. Let (Xt, t ≥ 0) be an Rd-valued integrable process. Then (Xt, t ≥ 0) is a peacock if (and
only if) the map: t −→ E[ψ(Xt)] is increasing, for every function ψ : Rd −→ R which is convex, of C∞ class
and such that the derivative ψ′ is bounded on Rd.

Proof. Let ψ : Rd −→ R be a convex function. For every a ∈ Rd, there exists an affine function ha such that:

∀x ∈ Rd, ψ(x) ≥ ha(x) and ψ(a) = ha(a).

Let {an; n ≥ 1} be a countable dense subset of Rd. We set:

∀n ≥ 1, ψn(x) = sup
1≤j≤n

haj (x).

Then:
∀x ∈ Rd, lim

n↑∞
↑ ψn(x) = ψ(x).

The functions ψn are convex and Lipschitz continuous.
Let φ be a nonnegative function, of C∞ class, with compact support and such that

∫
φ(x) dx = 1. We set,

for n, p ≥ 1,
∀x ∈ Rd, ψn,p(x) =

∫
ψn

(
x− 1

p
y

)
φ(y) dy.

Clearly, ψn,p is convex, of C∞ class and Lipschitz continuous. Consequently, its derivative is bounded on Rd.
Moreover, limp→∞ ψn,p = ψn uniformly on Rd.

The desired result now follows directly. �

The next result will be useful in the sequel.
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Proposition 2.2. Let (Xt, t ≥ 0) be an Rd-valued peacock. Then:

1. the map: t −→ E[Xt] is constant;
2. the map: t −→ E[|Xt|] is increasing, and therefore, for every T ≥ 0,

sup
0≤t≤T

E[|Xt|] = E[|XT |] <∞;

3. for every T ≥ 0, the random variables (Xt; 0 ≤ t ≤ T ) are uniformly integrable.

Proof. Properties 1 and 2 are obvious.
If c ≥ 0,

|x| 1{|x|≥c} ≤ (2 |x| − c)+.

As the function x −→ (2 |x| − c)+ is convex,

sup
t∈[0,T ]

E
[|Xt| 1{|Xt|≥c}

] ≤ E[(2 |XT | − c)+].

Now, by dominated convergence,
lim

c→+∞ E[(2 |XT | − c)+] = 0.

Hence, property 3 holds. �

2.3. Examples

The following examples are given in [5] for d = 1. The proofs given below are essentially the same as in [5].

Proposition 2.3. Let X be a centered Rd-valued random variable. Then (tX, t ≥ 0) is a peacock.

Proof. Let ψ : Rd −→ R be a convex function, and 0 ≤ s < t. Then,

ψ(sX) ≤
(
1 − s

t

)
ψ(0) +

s

t
ψ(tX).

Since X is centered, by Jensen’s inequality:

ψ(0) = ψ (E[tX ]) ≤ E[ψ(tX)].

Hence,
E[ψ(sX)] ≤

(
1 − s

t

)
E[ψ(tX)] +

s

t
E[ψ(tX)] = E[ψ(tX)]. �

Proposition 2.4. Let (Xt, t ≥ 0) be a family of centered, Rd-valued, Gaussian variables. We denote by C(t) =
(ci,j(t))1≤i,j≤d the covariance matrix of Xt. Then, (Xt, t ≥ 0) is a peacock if and only if the map: t −→ C(t)
is increasing in the sense of quadratic forms, i.e.:

∀a = (a1, . . . , ad) ∈ Rd, t −→
∑

1≤i,j≤d

ci,j(t) aiaj is increasing.

Proof.

(1) For every a ∈ Rd, the function:

x ∈ Rd −→
∑

1≤i,j≤d

ai aj xi xj =

(
d∑

i=1

ai xi

)2

is convex. This entails that, if (Xt, t ≥ 0) is a peacock, then the map: t −→ C(t) is increasing in the sense
of quadratic forms.
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(2) Conversely, suppose that the map: t −→ C(t) is increasing in the sense of quadratic forms. By the proof of [5],
Theorem 2.16, page 132, there exists a centered Rd-valued Gaussian process: (Γt = (Γ1,t, . . . , Γd,t), t ≥ 0),
such that:

∀s, t ≥ 0, ∀1 ≤ i, j ≤ d, E[Γi,s Γj,t] = ci,j(s ∧ t).
Therefrom we deduce that (Γt, t ≥ 0) is a martingale which is associated to (Xt, t ≥ 0), and consequently,
(Xt, t ≥ 0) is a peacock. �

Corollary 2.5. Let A be a d× d matrix. We consider the Rd-valued Ornstein−Uhlenbeck process (Ut, t ≥ 0),
defined as (the unique) solution, started from 0, of the SDE:

dUt = dBt +AUt dt

where (Bt, t ≥ 0) denotes a d-dimensional Brownian motion. Then, (Ut, t ≥ 0) is a peacock.

Proof. One has:

Ut =
∫ t

0

exp((t− s)A) dBs.

Hence, for every t ≥ 0, Ut is a centered, Rd-valued Gaussian variable whose covariance matrix is:

C(t) =
∫ t

0

exp(sA) exp(sA∗) ds

where A∗ denotes the transpose matrix of A. Therefrom it is clear that the map: t −→ C(t) is increasing in the
sense of quadratic forms, and Proposition 2.4 applies. �

Proposition 2.6. Let (Mt, t ≥ 0) be an Rd-valued, right-continuous martingale such that:

∀T > 0, E

[
sup

0≤t≤T
|Mt|

]
<∞.

Then,

1.
(
Xt :=

1
t

∫ t

0

Ms ds; t ≥ 0
)

is a peacock;

2.
(
X̃t :=

∫ t

0

(Ms −M0) ds; t ≥ 0
)

is a peacock.

Proof. Using Proposition 2.1, we may use the proof of [5], Theorem 1.4, page 26. For the convenience of the
reader, we reproduce this proof below.

(1) Let ψ : Rd −→ R be a convex function, of C∞ class and such that the derivative ψ′ is bounded on Rd.
Setting:

M̂t =
∫ t

0

s dMs,

one has, by integration by parts:

Xt = Mt − t−1M̂t and dXt = t−2M̂t dt.

Denoting by Fs the σ-algebra generated by {Mu; 0 ≤ u ≤ s}, one gets, for 0 ≤ s ≤ t,

E[Xt | Fs] = Xs + (s−1 − t−1) M̂s.
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Consequently, by Jensen’s inequality,

E[ψ(Xt)] ≥ E[ψ(Xs + (s−1 − t−1) M̂s)].

Using again the fact that ψ is convex, one obtains:

E[ψ(Xt)] ≥ E[ψ(Xs)] + (s−1 − t−1) E[ψ′(Xs) · M̂s].

Now,

ψ′(Xs) · M̂s =
∫ s

0

u−2ψ′′(Xu)(M̂u, M̂u) du+
∫ s

0

uψ′(Xu) · dMu

and therefore
E[ψ(Xt)] − E[ψ(Xs)] ≥ (s−1 − t−1) E[ψ′(Xs) · M̂s] ≥ 0,

which, by Proposition 2.1, yields the desired result.
(2) Let ψ be as above. One may suppose that M0 = 0. One has, for 0 ≤ s ≤ t,

E[X̃t | Fs] = X̃s + (t− s)Ms.

Consequently, by Jensen’s inequality,

E[ψ(X̃t)] ≥ E[ψ(X̃s + (t− s)Ms)].

Using again the fact that ψ is convex, one obtains:

E[ψ(X̃t)] ≥ E[ψ(X̃s)] + (t− s) E[ψ′(X̃s) ·Ms].

Now,

ψ′(X̃s) ·Ms =
∫ s

0

ψ′′(X̃u)(Mu,Mu) du+
∫ s

0

ψ′(X̃u) · dMu

and therefore
E[ψ(X̃t)] − E[ψ(X̃s)] ≥ (t− s) E[ψ′(X̃s) ·Ms] ≥ 0,

which, by Proposition 2.1, yields the desired result. �

3. Right-continuous peacoks

In this section, we shall show that any right continuous peacock admits an associated right-continuous mar-
tingale. For this, we start from Strassen’s theorem, which we now recall.

Theorem 3.1 (Strassen [8], Thm. 8). Let (μn, n ∈ N) be a sequence in M. Then (μn, n ∈ N) is a peacock if
and only if there exists a martingale (Mn, n ∈ N) which is associated to (μn, n ∈ N).

We shall extend this theorem to right-continuous peacocks indexed by R+. In the case d = 1, the following
theorem is proven in [4], by a quite different method. In particular, in [4], we do not use Strassen’s theorem,
nor the Hahn−Banach theorem, but an explicit approximation by solutions of SDE’s.

Theorem 3.2. Let (μt, t ≥ 0) be a family in M. Then the following properties are equivalent:

(i) there exists a right-continuous martingale associated to (μt, t ≥ 0);
(ii) (μt, t ≥ 0) is a peacock and the map:

t ≥ 0 −→ μt ∈ M
is right-continuous.
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Proof.

(1) We first assume that property (i) is satisfied. Then, the fact that (μt, t ≥ 0) is a peacock follows classically
from Jensen’s inequality. Let (Mt, t ≥ 0) be a right-continuous martingale associated to (μt, t ≥ 0). Then,
if f ∈ Cb(Rd), dominated convergence yields that, for any t ≥ 0,

lim
s→t,s>t

∫
f(x) μs(dx) = lim

s→t,s>t
E[f(Ms)] = E[f(Mt)] =

∫
f(x) μt(dx).

Therefore, the map:
t ≥ 0 −→ μt ∈ M

is right-continuous, and property (ii) is satisfied.
(2) Conversely, we now assume that property (ii) is satisfied. For every n ∈ N, we set:

μ
(n)
k = μk2−n , k ∈ N.

By Strassen’s theorem (Thm. 3.1), there exists a martingale (M (n)
k , k ∈ N) which is associated to (μ(n)

k , k ∈
N). We set:

X
(n)
t = M

(n)
k if t = k 2−n and X

(n)
t = 0 otherwise.

Consequently, the law of X(n)
t is μt if t ∈ {k 2−n; k ∈ N}, and is δ (the Dirac measure at 0) if t 
∈ {k 2−n; k ∈

N}.
Note that, due to the lack of uniqueness in Strassen’s theorem, the law of (X(n)

k2−n , k ∈ N) may not be the
same as the law of (X(n+1)

k2−n , k ∈ N).
Only the one-dimensional marginals are identical.

(3) Let D = {k 2−n; k, n ∈ N} the set of dyadic numbers. For every n ∈ N, for every r ≥ 1 and τr =
(t1, t2, . . . , tr) ∈ Dr, we denote by Π(r,n)

τr the law of (X(n)
t1 , . . . , X

(n)
tr

), a probability on (Rd)r.

Lemma 3.3. For every τr ∈ Dr, the set of probability measures: {Π(r,n)
τr ; n ∈ N} is tight.

Proof. We set, for x = (x1, . . . , xr) ∈ (Rd)r, |x|r =
∑r

j=1 |xj |. Then, for p > 0,

Π(r,n)
τr

(|x|r ≥ p) ≤ 1
p
Π(r,n)

τr
(|x|r) =

1
p

r∑
j=1

E[|X(n)
tj

|] ≤ 1
p

r∑
j=1

μtj (|x|)

since, by point (2), the law of X(n)
tj

is either μtj or δ. Hence,

lim
p→∞ sup

n≥0
Π(r,n)

τr
(|x|r ≥ p) = 0. �

(4) As a consequence of the previous lemma, and with the help of the diagonal procedure, there exists a
subsequence (nl)l≥0 such that, for every τr ∈ Dr, the sequence of probabilities on (Rd)r: (Π(r,nl)

τr , l ≥ 0),
weakly converges to a probability which we denote by Π

(r)
τr . We remark that, for l large enough, the law

of X(nl)
tj

is μtj . Then, there exists an Rd-valued process (Xt, t ∈ D) such that, for every r ≥ 1 and every

τr = (t1, . . . , tr) ∈ Dr, the law of (Xt1 , . . . , Xtr) is Π(r)
τr , and Π(1)

t = μt for every t ∈ D.
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Lemma 3.4. The process (Xt, t ∈ D) is a martingale associated to (μt, t ∈ D).

Proof. As we have already seen, the process (Xt, t ∈ D) is associated to (μt, t ∈ D). We now prove that it is a
martingale. We set:

∀p > 0, ∀x ∈ Rd, ϕp(x) =
(

1 ∨ |x|
p

)−1

x.

Then,
ϕp ∈ Cb(Rd; Rd) and ϕp(x) = x for |x| ≤ p.

Let 0 ≤ s1 < s2 < . . . < sr ≤ s ≤ t be elements of D, and let f ∈ Cb((Rd)r). We set: ‖ f ‖∞ = sup{|f(x)|; x ∈
(Rd)r}. Then, for l large enough,

E[f(X(nl)
s1

, . . . , X(nl)
sr

)X(nl)
t ] = E[f(X(nl)

s1
, . . . , X(nl)

sr
)X(nl)

s ].

On the other hand,

|E[f(Xs1 , . . . , Xsr )ϕp(Xt)] − E[f(Xs1 , . . . , Xsr )Xt]| ≤ ‖ f ‖∞ μt

(|x| 1{|x|≥p}
)
, for every p > 0,

∣∣∣E[f(X(nl)
s1

, . . . , X(nl)
sr

)ϕp(X
(nl)
t )] − E[f(X(nl)

s1
, . . . , X(nl)

sr
)X(nl)

t ]
∣∣∣ ≤ ‖ f ‖∞ μt

(|x| 1{|x|≥p}
)
,

for every l and every p > 0,

and likewise, replacing t by s. Moreover,

lim
l→∞

E[f(X(nl)
s1

, . . . , X(nl)
sr

)ϕp(X
(nl)
t )] = E[f(Xs1 , . . . , Xsr )ϕp(Xt)],

and likewise, replacing t by s. Finally, we obtain, for p > 0,

|E[f(Xs1 , . . . , Xsr )Xt] − E[f(Xs1 , . . . , Xsr )Xs]| ≤ 2 ‖ f ‖∞
[
μt

(|x| 1{|x|≥p}
)

+ μs

(|x| 1{|x|≥p}
)]
,

and the desired result follows, letting p go to ∞. �

(5) By the classical theory of martingales (see, for example, [2]), almost surely, for every t ≥ 0,

Mt = lim
s→t,s∈D,s>t

Xs

is well defined, and (Mt, t ≥ 0) is a right-continuous martingale. Besides, since, by hypothesis, the map:
t ≥ 0 −→ μt ∈ M is right-continuous, we deduce from Lemma 3.4 that this martingale (Mt, t ≥ 0) is
associated to (μt, t ≥ 0). �

4. The general case

Theorem 3.2 shall now be extended, by approximation, to the general case.

Theorem 4.1. Let (μt, t ≥ 0) be a family in M. Then the following properties are equivalent:

(i) there exists a martingale associated to (μt, t ≥ 0);
(ii) (μt, t ≥ 0) is a peacock.
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Proof. Let (μt, t ≥ 0) be a peacock.

Lemma 4.2. There exists a countable set Δ ⊂ R+ such that the map:

t −→ μt ∈ M

is continuous at any s 
∈ Δ.

Proof. Let χ : Rd −→ R+ be defined by:

χ(x) = (1 − |x|)+ = (1 ∨ |x|) − |x|.

Then χ ∈ C+
c (Rd) and χ is the difference of two convex functions. We set: χm(x) = md χ(mx), and we define

the countable set H by:

H =

⎧⎨⎩
r∑

j=0

aj χm(x− qj); r ∈ N, m ∈ N, aj ∈ Q+, qj ∈ Qd

⎫⎬⎭ .

For h ∈ H, the function: t −→ μt(h) is the difference of two increasing functions, and hence admits a countable
set Δh of discontinuities. We set Δ =

⋃
h∈HΔh. Then Δ is a countable subset of R+, and t −→ μt(h) is

continuous at any s 
∈ Δ, for every h ∈ H. Now, it is easy to see that H is dense in C+
c (Rd) in the following

sense: for every ϕ ∈ C+
c (Rd), there exist a compact set K ⊂ Rd and a sequence (hn)n≥0 ⊂ H such that:

∀n, Supphn ⊂ K and lim
n→∞hn = ϕ uniformly.

Consequently, t −→ μt is vaguely continuous at any s 
∈ Δ, and, since measures μt are probabilities, t −→ μt is
also weakly continuous at any s 
∈ Δ. �

We may write Δ = {dj; j ∈ N}. For n ∈ N, we denote by (k(n)
l , l ≥ 0) the increasing rearrangement of the

set:
{k 2−n; k ∈ N} ∪ {dj; 0 ≤ j ≤ n}.

We define (μ(n)
t , t ≥ 0) by:

μ
(n)
t =

k
(n)
l+1 − t

k
(n)
l+1 − k

(n)
l

μ
k
(n)
l

+
t− k

(n)
l

k
(n)
l+1 − k

(n)
l

μ
k
(n)
l+1

if t ∈
[
k

(n)
l , k

(n)
l+1

]
.

Lemma 4.3. The following properties hold:

1. for every n ≥ 0, (μ(n)
t , t ≥ 0) is a peacock and the map: t −→ μ

(n)
t ∈ M is continuous;

2. for any t ≥ 0, sup{μ(n)
t (|x|); n ∈ N} <∞;

3. for any t ≥ 0, the set {μ(n)
t ; n ∈ N} is uniformly integrable;

4. for t ≥ 0, limn→∞ μ
(n)
t = μt in M.

Proof. Properties 1 and 4 are clear by construction. Property 2 (resp. property 3) follows directly from property 2
(resp. property 3) in Proposition 2.2. �

By Theorem 3.2, there exists, for each n, a right-continuous martingale (M (n)
t , t ≥ 0) which is associated to

(μ(n)
t , t ≥ 0). For any r ∈ N and τr = (t1, . . . , tr) ∈ Rr

+, we denote by Π
(r,n)
τr the law of (M (n)

t1 , . . . ,M
(n)
tr

), a
probability measure on (Rd)r.
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Lemma 4.4. For every τr ∈ Rr
+, the set of probability measures: {Π(r,n)

τr ; n ∈ N} is tight.

Proof. As in Lemma 3.3, for p > 0,

Π(r,n)
τr

(|x|r ≥ p) ≤ 1
p

r∑
j=1

μ
(n)
tj

(|x|),

and by property 2 in Lemma 4.3,
lim

p→∞ sup
n≥0

Π(r,n)
τr

(|x|r ≥ p) = 0. �

Let now U be an ultrafilter on N, which refines Fréchet’s filter. As a consequence of the previous lemma, for
every r ∈ N and every τr ∈ Rr

+, lim
U
Π(r,n)

τr
exists for the weak convergence and we denote this limit by Π(r)

τr .

By property 4 in Lemma 4.3, Π(1)
t = μt. There exists a process (Mt, t ≥ 0) such that, for every r ∈ N and every

τr = (t1, . . . , tr) ∈ Rr
+, the law of (Mt1 , . . . ,Mtr) is Π(r)

τr . In particular, this process (Mt, t ≥ 0) is associated to
(μt, t ≥ 0).

Lemma 4.5. The process (Mt, t ≥ 0) is a martingale.

Proof. The proof is quite similar to that of Lemma 3.4, but we give the details for the sake of completeness.
We recall the notation:

∀p > 0, ∀x ∈ Rd, ϕp(x) =
(

1 ∨ |x|
p

)−1

x.

Let 0 ≤ s1 < s2 < . . . < sr ≤ s ≤ t be elements of R+, and let f ∈ Cb((Rd)r). We set: ‖ f ‖∞ = sup{|f(x)|; x ∈
(Rd)r}. Then, for every n,

E[f(M (n)
s1
, . . . ,M (n)

sr
)M (n)

t ] = E[f(M (n)
s1
, . . . ,M (n)

sr
)M (n)

s ].

On the other hand,

|E[f(Ms1 , . . . ,Msr)ϕp(Mt)] − E[f(Ms1 , . . . ,Msr )Mt]| ≤ ‖ f ‖∞ μt

(|x| 1{|x|≥p}
)
, for every p > 0,

∣∣∣E[f(M (n)
s1
, . . . ,M (n)

sr
)ϕp(M

(n)
t )] − E[f(M (n)

s1
, . . . ,M (n)

sr
)M (n)

t ]
∣∣∣ ≤ ‖ f ‖∞ μ

(n)
t

(|x| 1{|x|≥p}
)
,

for every n and every p > 0,

and likewise, replacing t by s. Moreover,

lim
U

E[f(M (n)
s1
, . . . ,M (n)

sr
)ϕp(M

(n)
t )] = E[f(Ms1 , . . . ,Msr )ϕp(Mt)],

and likewise, replacing t by s. Finally, we obtain, for p > 0,

|E[f(Xs1 , . . . , Xsr)Xt] − E[f(Xs1 , . . . , Xsr)Xs]| ≤ 2 ‖ f ‖∞ sup
n≥0

[
μ

(n)
t

(|x| 1{|x|≥p}
)

+ μ(n)
s

(|x| 1{|x|≥p}
)]
,

and, by property 3 in Lemma 4.3, the desired result follows, letting p go to ∞. �

This lemma completes the proof of Theorem 4.1. �
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