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TOWARDS A UNIVERSALLY CONSISTENT ESTIMATOR
OF THE MINKOWSKI CONTENT ∗

Antonio Cuevas1, Ricardo Fraiman2 and László Györfi3

Abstract. We deal with a subject in the interplay between nonparametric statistics and geometric
measure theory. The measure L0(G) of the boundary of a set G ⊂ Rd (with d ≥ 2) can be formally
defined, via a simple limit, by the so-called Minkowski content. We study the estimation of L0(G) from
a sample of random points inside and outside G. The sample design assumes that, for each sample
point, we know (without error) whether or not that point belongs to G. Under this design we suggest a
simple nonparametric estimator and investigate its consistency properties. The main emphasis in this
paper is on generality. So we are especially concerned with proving the consistency of our estimator
under minimal assumptions on the set G. In particular, we establish a mild shape condition on G under
which the proposed estimator is consistent in L2. Roughly speaking, such condition establishes that
the set of “very spiky” points at the boundary of G must be “small”. This is formalized in terms of the
Minkowski content of such set. Several examples are discussed.
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1. Introduction

The problem under study. The sampling model. The statistical estimation of the boundary measure of a subset
G of [0, 1]d, d ≥ 2, has been usually tackled from the point of view of stereology (see, e.g., Baddeley and
Vedel-Jensen [3]), using information provided by lower dimensional sections drawn on this set.

We consider here a different approach, using just a random sample of points. Our sample data will be given
by (Zi, IG(Zi)), i = 1, . . . , n, where the Zi are i.i.d. random vectors uniformly distributed on [0, 1]d and IG

denotes the indicator function of G.
We are interested in estimating from the sample data the boundary measure L0(G) of G, as given by the

Minkowski content (to be defined below).
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We will use some typical tools of nonparametrics (as the smoothing parameters) but some key concepts, as
well as the main target of our study, come from the field of geometric measure theory.

The problem of estimating the boundary measure using nonparametric methods has been previously con-
sidered by Cuevas et al. [5], who obtain consistency results and convergence rates (of order n−1/(2d)) for the
estimation of L0(G) under some conditions on G which exclude the existence of sharp peaks or inlands or impose
some kind of smoothness on the boundary. Faster rates (of order n−1/(d+1) up to a logarithmic factor) have
been obtained by Pateiro−López and Rodŕıguez−Casal [14] under the additional assumption of r-convexity
(which is used in the definition of the corresponding estimator). Armendáriz et al. [2] consider also the problem
under a slightly different sampling design (based on two independent samples with different size orders from G
and [0, 1]d \ G), obtaining asymptotic normality for a simple estimator under shape conditions similar to those
in Cuevas et al. [5]. When the surface measure is defined in terms of a surface integral (rather than by the
Minkowski content), Jiménez and Yukich [10] provide a consistent estimator for the surface measure based on
the use of Delaunay triangulations.

In this work the emphasis is mainly on generality. We propose a simple, computationally feasible, nonparamet-
ric estimator of the boundary Minkowski content L0(G) which is “nearly universal” in the sense that it provides
a consistent estimation of L0(G) for a broad class of sets G, defined by very general conditions which apply
even in the case of complicated and “unsmooth” G’s. The possible existence of a fully universally consistent
estimator remains as an open problem.

Some notation. In what follows μ will denote the uniform distribution on [0, 1]d (i.e., the Lebesgue measure μL

restricted to the unit square), B(x, ε) will denote the closed ball of center x and radius ε. The Euclidean norm in
Rd will be denoted by ‖.‖. B(A, ε) will stand for the ε-parallel set of a set A ⊂ Rd, B(A, ε) = {x : D(x, A) ≤ ε},
where D(x, A) = infy∈A ‖x − y‖.

For any Borelian set A ⊂ Rd, diam(A) will represent the diameter of A, diam(A) = sup{‖x− y‖ : x, y ∈ A}.
Throughout this paper Gc will denote the complementary set of G relative to [0, 1]d, that is Gc = [0, 1]d \ G

and ∂G will represent the topological boundary of G. Unless otherwise stated, → will denote convergence as
n → ∞.

General assumptions on G. Denote by ∂Gμ the μ-boundary of G,

∂Gμ = {x : for all ε > 0, μ(B(x, ε) ∩ G) > 0 and μ(B(x, ε) ∩ Gc) > 0}. (1.1)

Obviously, ∂Gμ ⊂ ∂G In what follows we will assume that ∂Gμ = ∂G.
In intuitive terms (e.g., in the case d = 2) this entails that ∂G does not include “superfluous” subsets, such

as line segments of null measure, irradiating from the central core of G. These line segments would contribute
to the topological boundary measure but they are “invisible” with our statistical model since they are made
of points which do not have simultaneously a substantial part of G and Gc around them. It can be easily seen
that, if ∂Gμ = ∂G is not fulfilled, we cannot have any consistent sequence of estimators Tn for the boundary
measure of a closed G � [0, 1]d based on a sample (Zi, Yi), i = 1, . . . , n with Yi = IG(Zi) and Zi i.i.d. uniform
on [0, 1]d.

We will assume throughout that μ(G) > 0, with Ḡ = G∪ ∂G ⊂ (0, 1)d and that the boundary measure of G,
L0(G) (to be defined below), is finite.

2. Some geometric concepts. Definition of the estimator

This section is devoted to some geometric and statistical preliminaries. First, we briefly recall some well-
known concepts in geometric measure theory. Then in Section 2.2 we introduce and discuss the shape assumption
imposed on G in order to get a consistent estimation of its boundary measure. Finally, in Section 2.3 we define
and motivate the estimator whose properties are analyzed in the rest of the paper.



TOWARDS A UNIVERSALLY CONSISTENT ESTIMATOR OF THE MINKOWSKI CONTENT 361

2.1. Some basic ideas on lower-dimensional measures

The measurement of boundary surfaces is a particular case of an especially delicate and elusive problem:
the study of lower dimensional measures in the Euclidean space. There is no unique natural way of deciding
what surfaces can be measured in the d-dimensional space and how to assign them the corresponding lower-
dimensional measure. Several, not equivalent, proposals have been made. Of course, all of them coincide when
applied to “easy” sets (for example, convex polyhedra) but these are just a tiny part of the immense family of
really complicated sets which can appear in different mathematical problems, in particular in the fractal sets
theory. The area of mathematics dealing with these subjects is called geometric measure theory. Its beginning
as a structured mathematical discipline goes back at least fifty years. The books by Federer [9] and Mattila [12]
are two classical references. We briefly review here some relevant concepts of geometric measure theory which
will be used or mentioned below.

The Hausdorff measure of a surface. The best known concept of k-dimensional measure on Rd, for k ≤ d
is the so-called Hausdorff measure defined by

Hk(A) = lim
δ↓0

inf

{∑
i

diam(Ei)k : Ei Borelian, A ⊂
⋃

Ei, diam(Ei) ≤ δ

}
. (2.1)

We are specially interested in the case k = d− 1, A = ∂G, where Hd−1(∂G) provides a standard notion for the
measure of the boundary of G ⊂ Rd.

It can be seen (e.g., Mattila [12], Chap. 4) that Hk is a true measure which for k = 0 coincides with the
“counting measure” (that is H0(A) is the cardinality of A) and for k = d coincides, when multiplied by the
normalizing factor 2−dμL(B(0, 1)), with the Lebesgue measure on Rd.

The Minkowski content. While Hausdorff measure is the most popular notion of low-dimensional measure
in the Euclidean space, we will rather use here another simpler concept usually called the Minkowski content.
If we focus in our target of measuring the boundary of G we may define the ((d − 1)-dimensional) boundary
content of G by

L0(G) = lim
ε→0

μ(B(∂G, ε))
2ε

, (2.2)

provided that this limit exists. The recent papers by Ambrosio et al. [1] and Villa [15] provide deep studies of
the Minkowski content and some other closely related notions.

Rectifiability. It is intuitively clear that L0(G) provides a definition, alternative to Hd−1(∂G), for the “surface
area” of G. In general, the Minkowski content is not a true measure as it fails to be σ-subadditive. However,
it coincides with Hd−1(∂G) if G is “regular enough”. For example, this is the case if G is compact and ∂G is
(d − 1)-rectifiable, (∂G is said to be k-rectifiable if there is a compact set C ⊂ Rk and a Lipschitz function
f : Rk → Rd such that ∂G = f(C); see, e.g., Federer [9] p. 251, 275).

This concept is closely related with the more usual notion of rectifiable curve, defined by a continuous function
γ : I → Rd, where I = [a, b] is a compact interval of R. The curve γ is said to be rectifiable if

Length(γ) = sup

{
n∑

i=1

‖γ(ti) − γ(ti−1)‖ : n ∈ N, a = t0 < . . . < tn = b

}
< ∞.

It is clear that if γ is 1-rectifiable, then it is rectifiable in the above sense. A curve γ : [a, b] → Rd is called
simple if the function γ is injective when restricted to the open interval (a, b) (that is we allow γ(a) = γ(b)).
It can be seen that the value of the one-dimensional Hausdorff measure of a simple rectifiable curve coincides
with its length.

It should be clear, from the above definitions and the discussion below, that there are some reasons for using
the Minkowski content (instead of other mathematical notions) for defining the surface area. The expression (2.2)
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of the Minkowski content suggests, in a quite natural way, several estimators for L0(G). Also, the Minkowski
content (2.2) is particularly suitable for statistical purposes as it is defined just in terms of measure, with no
resort to analytic concepts such as rectifiability or differentiability notions. This allows for an easier handling of
statistical properties such as convergence rates, see Cuevas et al. [5], or asymptotic normality, see Armendáriz
et al. [2].

2.2. Our main assumption and its geometric interpretation

Let us recall that our target is to provide an estimator for the Minkowski content of a set G which is consistent
under very general conditions.

In Cuevas et al. [5] the consistency of a plug-in type estimator, see (2.6) below, is established under the
following double standardness assumption: the set G is said to be doubly standard if there exist two constants
δ0 > 0 and ε0 > 0 such that, for all ε ∈ (0, ε0) and x ∈ ∂G,

μ(B(x, ε) ∩ Gc) ≥ δ0ε
d and μ(B(x, ε) ∩ G) ≥ δ0ε

d. (2.3)

In fact the standardness assumption appears under similar, slightly different forms in the set estimation litera-
ture. See Cuevas and Fraiman [4], for further details and references. In intuitive terms, this condition rules out
the existence of too sharp peaks or inlands in the boundary of G.

A new type of standardness: our main assumption on the shape of G.
For x ∈ ∂G, let us introduce the notations

rGc(x) = inf
0<ε≤1

μ(B(x, ε) ∩ Gc)
εd

and rG(x) = inf
0<ε≤1

μ(B(x, ε) ∩ G)
εd

·
In order to have measurable functions rGc and rG, we take the infimum for rational 0 < ε ≤ 1.

These functions are closely related with the notion of lower d-density (see, e.g., Mattila [12], p. 89). Through-
out the discussion below it will be clear that the bound 1 for ε in the definition of rG and rGc is not relevant
and can be replaced with any other positive value ε0.

These definitions imply that for each 0 < ε ≤ 1,

μ(B(x, ε) ∩ Gc) ≥ rGc(x)εd and μ(B(x, ε) ∩ G) ≥ rG(x)εd.

Let us now define for each z ∈ Rd the projection P (z) of z on ∂G, that is P (z) = argming∈∂G‖z − g‖ is the
point which realizes the minimum distance from z to ∂G, ‖z − P (z)‖ = D(z, ∂G). It is known that P (z) is
uniquely defined almost everywhere. More precisely, let us define P(z) = {g ∈ ∂G : ‖g − z‖ = D(z, ∂G)} and
C = {z : P(z) has a unique point}. As shown in Erdős [7] Remark 3, μ(Cc) = 0. Moreover, it can be proved
that the projection function P is continuous when restricted to C; see Federer [8], Theorem 4.8. In particular,
P is measurable as it coincides with a continuous function except for a (Lebesgue) null set.

Then we are ready to establish our main assumption. We will say that G is (doubly) standard almost every-
where (a.e.) if for any numerical sequence γn → 0.

μ({z : rGc(P (z)) ≤ γn} ∩ B(∂G, εn)) = o(εn), and μ({z : rG(P (z)) ≤ γn} ∩ B(∂G, εn)) = o(εn), (2.4)

as εn → 0, where the notation Rn = o(εn) stands for lim supn→∞ Rn/εn = 0. Without loss of generality we may
assume γn ↓ 0 in (2.4).

It can be seen that assumption (2.4) is much more general than (2.3) since, under (2.3), the sets appearing
in condition (2.4) are eventually empty.

Interpretation in terms of the Minkowski content. The rest of this section is devoted to analyze and
explain the real extent of our assumption (2.4).

Let us call
T0 = T−

0 ∪ T +
0 := {x ∈ ∂G : rGc(x) = 0} ∪ {x ∈ ∂G : rG(x) = 0}

the set of non-standard points of G.
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The following result provides an interpretation of condition (2.4) in terms of the Minkowski measure of T0

thus accounting for the name “double standardness almost everywhere”.

Proposition 2.1. Let γn be a numerical sequence γn ↓ 0. Denote T−
n = {z ∈ ∂G : rGc(x) ≤ γn}, T +

n = {z ∈
∂G : rG(x) ≤ γn}, Tn = T−

n ∪ T +
n . Then,

(a) μ(Tn) = o(εn) is a sufficient condition for the double standardness a.e. (2.4).
(b) If L0(T0) = 0 then G also fulfills the double standardness a.e. condition (2.4).

Proof.

(a) Note that T−
n ↓ {x ∈ ∂G : rGc(x) = 0} = T−

0 . Moreover,

{z : rGc(P (z)) ≤ γn} ∩ B(∂G, εn) =
⋃

x∈∂G, rGc (x)≤γn

P−1(x) ∩ B(∂G, εn)

=
⋃

x∈T−
n

P−1(x) ∩ B(∂G, εn) ⊂ B(T−
n , εn).

A similar inclusion holds for T +
n . Now, since Tn = T +

n ∪ T−
n , the result follows.

(b) According to the previous result it suffices to prove that L0(T0) = 0 implies μ(Tn) = o(εn), as εn → 0.
Indeed, for all m, n ∈ N define cm,n = μ(B(T−

m , εn))/εn. We have

lim sup
n

μ(B(T−
n , εn))

εn
≤ lim

m
lim sup

n
cm,n = inf

m
lim sup

n
cm,n.

Denote c = infm lim supn cm,n. Let us prove c = 0. By contradiction, assume that c > 0. In this case we would
have for all m, lim supn cm,n ≥ c so that we could choose a subsequence {nk} such that μ(B(T−

m , εnk
)) ≥ cεnk

/2
(note that c is finite since L0(G) < ∞). Therefore,

inf
m

μ(B(T−
m , εnk

)) ≥ cεnk
/2 > 0.

Then, since B(T−
m , εnk

) ↓ B(T−
0 , εnk

), as m → ∞, the above result entails

inf
m

μ(B(T−
m , εnk

)) = μ(B(T−
0 , εnk

)) ≥ cεnk
/2,

which leads to a contradiction with the assumption L0(T0) = 0; indeed note that, since T0 ⊂ ∂G, B(T0, ε) =
B(∂T0, ε) so that L0(T0) coincides in fact with the (d− 1)-dimensional Minkowski content of T0. The reasoning
for T +

0 is identical. Then we conclude that μ(Tn) = o(εn) as this property holds for both μ(T−
n ) and μ(T +

n ). �

As a consequence of Proposition 2.1, we could say that G is (doubly) standard (a.e.) when the set of very-
spiky non-standard points T0 in the boundary of G is “small”, i.e. (d−1)-Minkowski-null (see, e.g., Mattila [12],
p. 79). Thus, as we will discuss below, the class of sets fulfilling (2.4) is extremely general.

2.3. The estimator

Before defining our estimate, let us recall (for comparison purposes) another estimator which has been
previously considered in Cuevas et al. [5].

A plug-in type estimator. Given z ∈ [0, 1]d and ε ≥ 0, denote

Gn,z(ε) =
n∑

i=1

I{Zi∈G,‖Zi−z‖≤ε}, Rn,z(ε) =
n∑

i=1

I{Zi /∈G,‖Zi−z‖≤ε}. (2.5)
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Now we may define

L0n =
μ(Bn)
2εn

, (2.6)

where {εn} is a deterministic sequence with εn ↓ 0, and Bn is an estimator of the “dilated boundary” B(∂G, ε)
defined by

Bn =
{
z ∈ [0, 1]d : Rn,z(εn) ≥ 1 and Gn,z(εn) ≥ 1

}
. (2.7)

Of course, the exact evaluation of μ(Bn) could be difficult in practice but this quantity can be approximated with
an arbitrary precision by Monte Carlo sampling. That is, we could draw a (large) artificial sample X1 . . . , XN

from the uniform distribution on [0, 1]d and estimate μ(Bn) as the proportion of Xi’s observations belonging
to Bn.

Another estimator based on a smoothed empirical average. In the present work we will consider a
slightly different approach by estimating (2.2) through a sort of smoothed empirical average which does not
require any Monte Carlo approximation. To motivate our estimator let us start with a pseudo-estimate

L1n =
n∑

i=1

I{Zi∈B(∂G,εn)}
2εnn

(2.8)

=
n∑

i=1

I{Zi∈B(∂G,εn),Zi∈G}
2εnn

+
n∑

i=1

I{Zi∈B(∂G,εn),Zi∈Gc}
2εnn

where again {εn} is a sequence of smoothing parameters with εn ↓ 0. Obviously, L1n is not a true estimator
since it is based on the unrealistic assumption that ∂G is known. Nevertheless, the expression (2.8) suggests the
following simple empirical approximation for L1n which can be calculated from the sample under the assumptions
of our sampling model,

Ln =
1

2εnn

n∑
i=1

(
I{‖Zi−Zn,Gc (Zi)‖≤εn,Zi∈G} + I{‖Zi−Zn,G(Zi)‖≤εn,Zi∈Gc}

)
, (2.9)

where for z ∈ G, Zn,Gc(z) denotes the first nearest neighbor of z among the points Z1, . . . , Zn which are in Gc,
and, for z ∈ Gc, Zn,G(z) is the first nearest neighbor of z among the points Z1, . . . , Zn which are in G. Note
that the definition (2.9) of Ln requires to have sample observations in both G and Gc, which happens eventually
with probability one. If there is no data on G or in Gc, Ln can be (arbitrarily) defined to be 0.

This paper is devoted to the study of the consistency properties of Ln.

3. Consistency

We provide here our main result, concerning L2-consistency, for the estimator Ln defined in (2.9). This result
holds under the very mild shape assumption (2.4) introduced in the previous section.

In order to compare Ln with the pseudo-estimate L1n let us note that

E(L1n) =
μ(B(∂G, εn))

2εn
→ L0(G), as n → ∞. (3.1)

Note also that if ‖Zi − Zn,Gc(Zi)‖ ≤ εn and Zi ∈ G then μ(B(Zi, εn) ∩ Gc) > 0, therefore Zi ∈ B(∂G, εn).
Similarly ‖Zi − Zn,G(Zi)‖ ≤ εn and Zi ∈ Gc imply Zi ∈ B(∂G, εn). Thus, Ln is a lower approximation of L1n,

Ln ≤ L1n.
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Theorem 3.1. Let us consider the estimator Ln of L0(G) defined in (2.9). Assume that

εn ↓ 0 and nεd
n → ∞, as n → ∞. (3.2)

Assume further that G fulfils the (double) a.e. standardness condition (2.4). Then

lim
n→∞ E

(
(Ln − L0(G))2

)
= 0.

Proof. Since Ln ≤ L1n,

E
(
(Ln − L0(G))2

)
= E

(
(Ln − E(Ln))2

)
+ (E(Ln) − L0(G))2

≤ E(L2
1n) − E2(Ln) + (E(Ln) − L0(G))2 . (3.3)

As E(L1n) = μ (B(∂G, ε)) /2ε → L0(G), the proof will be complete if we show that Var(L1n) → 0 and
E(L1n) − E(Ln) → 0.

Concerning Var(L1n), introduce the notation L(ε) = μ (B(∂G, ε)) /2ε, then

Var(L1n) =
Var(I{Z1∈B(∂G,εn)})

4ε2nn
≤ μ (B(∂G, εn))

4ε2nn
=

L(εn)
2εnn

→ 0,

since L(εn) → L0(G) and nεn → ∞.
One can upper bound (E(L1n) − E(Ln)) as follows

0 ≤ 2εn (E(L1n) − E(Ln)) = P{Z1 ∈ G, Z1 ∈ B(∂G, εn), ‖Z1 − Zn,Gc(Z1)‖ > εn}
+ P{Z1 ∈ Gc, Z1 ∈ B(∂G, εn), ‖Z1 − Zn,G(Z1)‖ > εn}, (3.4)

therefore

0 ≤ E(L1n) − E(Ln) =
1

2εn

∫
G∩B(∂G,εn)

(1 − μ(B(z, εn) ∩ Gc))n−1
μ(dz)

+
1

2εn

∫
Gc∩B(∂G,εn)

(1 − μ(B(z, εn) ∩ G))n−1 μ(dz).

Now, to handle the first term in the right-hand side we use the inequality 1 − x ≤ e−x, for x ∈ [0, 1], together
with assumption (3.2). Thus, given any C > 0, we have that for n large enough,

1
2εn

∫
G∩B(∂G,εn)

(1 − μ(B(z, εn) ∩ Gc))n−1
μ(dz) ≤ 1

2εn

∫
B(∂G,εn)

e−(n−1)μ(B(z,εn)∩Gc)μ(dz)

≤ μ (B(∂G, εn))
2εn

e−C +
μ ({z : (n − 1)μ(B(z, εn) ∩ Gc) ≤ C} ∩ B(∂G, εn))

2εn
·

Obviously, z ∈ B(∂G, εn) implies that B (P (z), εn − ‖z − P (z)‖) ⊂ B(z, εn). Therefore

1
2εn

∫
G∩B(∂G,εn)

(1 − μ(B(z, εn) ∩ Gc))n−1
μ(dz)

≤ L(εn)e−C +
μ ({z : (n − 1)μ(B(P (z), εn − ‖z − P (z)‖) ∩ Gc) ≤ C} ∩ B(∂G, εn))

2εn
·

For an arbitrary α ∈ (0, 1), we have that

{z : (n − 1)μ (B(P (z), εn − ‖z − P (z)‖) ∩ Gc) ≤ C} ∩ B(∂G, εn)
⊂ {z : (n − 1)μ (B(P (z), εn − ‖z − P (z)‖) ∩ Gc) ≤ C} ∩ B(∂G, αεn) ∪ (B(∂G, εn) \ B (∂G, αεn)) ,
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so

1
2εn

∫
G∩B(∂G,εn)

(1 − μ(B(z, εn) ∩ Gc))n−1 μ(dz)

≤ L(εn)e−C +
μ({z : (n − 1)μ(B(P (z), εn − αεn) ∩ Gc ≤ C} ∩ B(∂G, αεn))

2εn

+L(εn) − αL(αεn)

≤ L(εn)e−C +
μ({z : (n − 1)rGc(P (z))(1 − α)dεd

n ≤ C} ∩ B(∂G, αεn))
2εn

+L(εn) − αL(αεn)

= L(εn)e−C +
μ({z : rGc(P (z)) ≤ C/((n − 1)(1 − α)dεd

n)} ∩ B(∂G, αεn))
2εn

+L(εn) − αL(αεn)

This inequality together with (3.2) and (2.4) imply that

lim sup
n→0

P{Z1 ∈ G, Z1 ∈ B(∂G, εn), ‖Z1 − Zn,Gc(Z1)‖ > εn}
2εn

≤ L0(G)e−C + (1 − α)L0(G).

Since α < 1 and C > 0 are arbitrary, we conclude

lim
n→0

P{Z1 ∈ G, Z1 ∈ B(∂G, εn), ‖Z1 − Zn,Gc(Z1)‖ > εn}
2εn

= 0.

The term P{Z1 ∈ Gc, Z1 ∈ B(∂G, εn), ‖Z1 − Zn,G(Z1)‖ > εn} in (3.4) can be handled in a similar way. �

3.1. Some examples

The purpose of this subsection is to gain some insight on the true meaning of the crucial condition (2.4) and,
secondarily, of the assumption L0(G) < ∞. As indicated above, hypothesis (2.4) is in fact a generalization of
the more intuitive double standardness assumption (2.3) imposed, among others, by Cuevas et al. [5]. From the
results of the above subsection we see that, roughly speaking, (2.4) relaxes the assumption (2.3) by allowing the
presence of sharp inlands or peaks in a “small portion” of the boundary.

We next provide three examples, with an increasing level of complexity, of sets G where (2.4) is fulfilled
and L0(G) is well-defined and finite so, according to Theorem 3.1, L0(G) can be consistently estimated. These
examples show that our consistency result applies in fact to some complicated sets where the double standard-
ness (2.4) does not hold. In order to see the intuitive meaning of L0(G) < ∞ we also finally give a “negative
example” where L0(G) = ∞. When required, the general assumption Ḡ ⊂ (0, 1)d should be replaced with
Ḡ ⊂ (a, b)d for another suitable “frame box” [a, b]d.

The pagoda. The standardness condition (2.3) is fulfilled in the “simple house” G1 = {(x, y) : x ∈
[0.2, 0.8], y ≤ f(x) = 1 − |x − 1/2|} on the left of Figure 1, but it fails in the example G2 = {(x, y) :
x ∈ [0.2, 0.8], y ≤ f(x) = exp(−|x − 1/2|1/3) on the right, where the “linear peak” in the roof of the house is
replaced by an exponential, pagoda-type peak. It is clear, from Proposition 2.1 (b), that our assumption (2.4)
holds for the pagoda G2, since the only element in T0 is the upper vertex. Also L0(G2) is well-defined and finite.
Therefore, L0(G2) can be estimated consistently with our estimator (2.9).

The many-many-boxes. Let us consider the set B =
⋃∞

n=1 Bn, where {Bn} is a sequence of disjoint closed
square boxes, strictly contained in the unit square, chosen in such a way that

∑
n L0(Bn) < ∞ We will also

assume that the sequence of boxes accumulates towards a unique point v ∈ [0, 1]2. Let us now define G = {v}∪B.
It is clear that G does not fulfill the double standardness assumption (2.3) imposed in Cuevas et al. [5] to

estimate consistently the boundary length of G: it suffices to study this condition at the point v (note that
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Figure 1. The house fulfills standardness assumption (2.3), the pagoda meets the broader
condition (2.4).

μ(Bn) = o(1/n2) since L0(Bn) = o(1/n)). However, L0(G) can be estimated consistently using our estimator.
This follows again from Proposition 2.1 (b) and Theorem 3.1.

The Cantor hypograph. Let X be a random variable taking values in [0, 1] such that in its binary expansion
the components are i.i.d. and the probability of 1 is denoted by p. If p = 1/2 then X has (uniform) density. For
all other values of p, X has singular Cantor-type continuous distribution, and so its distribution function F (x)
is continuous but not absolutely continuous. In intuitive terms this means that F manages to “climb” from 0
to 1 increasing only in a Lebesgue null set, just as the discrete distributions do, but with no jumps. We will see
that for all p (except for the “continuous” case p = 1/2) the length of the graph of F is 2. The appearance of
the graph of F depends critically on the value of p. While for small values of p this graph does not look very far
from that of a typical discrete distribution, the graphs corresponding to values of p close to 1/2 would be almost
undistinguishable from the linear uniform case F0(x) = x, except for a few small inwards peaks. The striking
fact is that such peaks must be important enough to account for the increase in length from

√
2 (corresponding

to p = 1/2) to 2 (for any other p). Of course the point is that the peaks appear “everywhere” in the graph as
suggested by the approximations in Figure 2 below.

Define G as the hypograph of F , that is G = {(x, y) : x ∈ [0, 1], 0 ≤ y ≤ F (x)}. Note that the μ-boundary
of G, with respect to the unit square is Gr(F ), the graph of F , that is Gr(F ) = {(x, F (x)) : x ∈ [0, 1]}.

We next show that Theorem 3.1 can be applied in this case so that the estimator (2.9) can be used to
consistently estimate the length of Gr(F ).

It can be proved that L0(Gr(F )) = 2. We will not fully develop all the details. Let us just outline some
relevant points. First note that, since F is a bounded variation function, supP{

∑
i |F (xi) − F (xi−1)|} < ∞

where the supremum is taken on the set P of all possible partitions 0 = x0 < x1 < . . . < xn = 1 of the
unit interval. This, together with the norm inequality ‖v‖ ≤ ∑

i |vi|, for all v = (v1, . . . , vn) ∈ Rn, n ∈ N,
entails that Gr(F ) is a rectifiable curve. Second, as indicated in Section 2.1, the rectifiability of Gr(F ) in turn
implies that H1(Gr(F )) = Length(Gr(F )). This follows from the definitions of H1 and the “rectifiable” length
defined in Section 2. In the third place note that, as mentioned in Mattila [12], page 80, if Γ is a rectifiable
curve, its Minkowski content L0(Γ ) coincides with the corresponding one-dimensional Hausdorff measure; see
also Federer [9], 3.2.37-44.

The true value of L0(Gr(F )) could be obtained as the limit of a polygonal approximation, see e.g.
http://en.wikipedia.org/wiki/Arc length. For example, we could construct an approximating sequence
as follows: let k ≥ 1 be an integer, and introduce the distribution function Fk, which is the piecewise linear and
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Figure 2. Approximating functions Fk for p = 0.05 (left) and p = 0.25 (right) and k = 6, 8, 12.

continuous interpolation of F such that for each integer 1 ≤ i ≤ 2k, Fk(i/2k) = F (i/2k). Figure 2 shows the
graphs of the approximating functions Fk for different values of k and p.

Finally, to prove that (2.4) holds we only need to prove that (2.3) is fulfilled since this is a stronger assumption.
In this case the double standardness property (2.3) is valid since, as F is a monotone non decreasing function,
inequalities in (2.3) hold for δ0 = 1/4. �

A pathological example. As indicated in O’Neill [13], see also http://mcs.open.ac.uk/tcon2/
encycloWeb.pdf, “a standard example of a 1-rectifiable set in the plane is a countable union of circles whose
centres are dense in the unit square and with radii having a finite sum”. So consider a such union S of open
balls included in the square C = [1/2, 3/4]2 whose centres are dense in C and denote by T the union of the
corresponding circumferences. We may construct S such that μ(S) = 1/32. Define G = C \ S. As S is dense in
C, we have that G coincides with ∂G. Hence ∂G has a positive area, μ(∂G) = μ(G) = 1/16−1/32 = 1/32. From
the definition of the Minkowski content this entails L0(G) = ∞, which do not coincides with Length(T ) < ∞.
This example shows that L0(G) < ∞ is itself an important shape restriction that excludes from consideration
some pathological examples, as that just described, in which our approach would fail.

4. Open problems and final remarks

Universal estimation. In our view, the main challenge suggested by the results in this paper is to decide
whether or not the estimator Ln defined in (2.9) is universally consistent in the sense that Ln converges (at
least in probability) to L0(G) as n → ∞, under suitable conditions on the smoothing parameters εn but with
no additional assumption on G (except for L0(G) < ∞ and ∂Gμ = ∂G). Though our shape condition (2.4) is
indeed very general, it is not clear to us whether it could be dropped using another method of proof. In that
case, our estimate Ln would be indeed universally consistent.

Strong consistency. Another technical issue of some interest is to study whether under our assumption (2.4)
the strong (almost sure) consistency holds under suitable conditions on εn. This remains as an open problem.
The difficulty is clearly due to the definition of the estimate as an empirical measure where each sample point
contributes conditionally to many others, thus complicated conditional events have to be dealt with. As a referee
pointed out to us, this could be a place to use local empirical processes tools and U-statistics type techniques
as well as some appropriate concentration inequality.
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Extension to further designs. We could also think of analyzing the estimation of L0(G) from different
sampling designs. A relevant issue in this line would be to tackle the estimation using just one inside sample,
instead of having points inside and outside G. This is clearly a more difficult problem which, typically, will
require stronger assumptions on G; see. e.g., Cuevas et al. [6]. Another interesting question is to consider a
generalized version of our inside-outside design incorporating the possibility of “error in variables”, in the sense
that the membership, to either G or Gc, of the observations Zi is correctly identified with a probability p (in
our case p = 1); see Mammen and Tsybakov [11] for related ideas. While this design looks more realistic than
that considered here, it seems to us that our results could be extended for it with some technical changes and
our estimator will work as well under this design (at some unavoidable cost in efficiency).

Some practical issues. The comparison, via simulations, with the estimators considered in Cuevas et al. [5],
Pateiro−López and Rodŕıguez−Casal [14] and Jiménez and Yukich [10] is another obvious pending task. Some
real-data problems presented or commented in these papers could also be considered.
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