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POLYNOMIAL EXPANSIONS OF DENSITY OF POWER MIXTURES

Denys Pommeret
1

Abstract. For any given random variable Y with infinitely divisible distribution in a quadratic natural
exponential family we obtain a polynomial expansion of the power mixture density of Y . We approach
the problem generally, and then consider certain distributions in greater detail. Various applications are
indicated and the results are also applied to obtain approximations and their error bounds. Estimation
of density and goodness-of-fit test are derived.
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Introduction

Polynomial expansions play an important part in approximation theory, as for instance when the exact
probability density function is unknown or is of no use because of its complexity. Truncations of expansions
yield approximations which are widely studied in probability theory and statistics.

In this paper we are interested in finding polynomial expansions within the frame of power mixture, a
term that we now precise. Let Y and W be independent real r.v. with characteristic functions φY and φW ,
respectively, and suppose that W is non negative with probability 1 and that the distribution of Y is infinitely
divisible. Randomizing the power of φY with respect to (w.r.t.) W gives a r.v., denoted by X = Y ∗W , called a
power mixture of Y -distribution and defined by its characteristic function

φX(t) =
∫
{φY (t)}w ν(dw), (1)

where ν denotes the distribution of W . This is a particular case of [6]. Moreover, we restrict our attention
with distributions in the class of quadratic natural exponential families (NEF); that is, the variance is a second
order polynomial of the mean. Such a class contains normal, Poisson, gamma, binomial, negative binomial
and hyperbolic distributions. However the binomial distribution will be excluded of the study since it is not
infinitely divisible.

From a statistical point of view, the concept of power mixture may be defined as a special form of mixtures
as follows: let φ(t) be an infinitely divisible characteristic function and let, for w > 0, f(x|w) be the probability
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Figure 1. Poisson process.
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Figure 2. Power mixed Poisson process with chi-square mixing distribution.

density corresponding to the characteristic function φw(t). We express the power mixture by the density

fY ∗W (x) ≡
∫ ∞

0

f(x|w)ν(dw).

The distribution of Y ∗W may be interpreted as a mixed distribution w.r.t. suitably chosen parameter, which is
known as the Jorgensen parameter (see [9], for a development).

Various statistical situations are concerned with power mixtures. We give two examples in the context of
quadratic NEF.

• Random time Poisson process. Random time transformations of processes have been studied in the
literature, especially in the cases of Markov and semi-Markov processes (see for instance [18]). In the
classical setting one starts with a Markov process Yt and defines a new process of the same type by
putting Wt = YSt , where St is an increasing process. Power mixtures are concerned with this situation
when Yt = Y ∗t

1 is a process with independent and stationary increments. Then we may consider the
power mixture process defined by Xt = Y ∗Wt , where Wt is a specific positive process. Figures 1
and 2 show two simulated processes Xt. The first one is a Poisson process such that Xt has Poisson
distribution with mean t, t > 0 (Fig. 1). The second one is a power mixed Poisson process such that
Xt = Y ∗Wt , where Yt are independently Poisson distributed with mean t and Wt are independently
chi-square distributed with t degrees of freedom (Fig. 2). Here all marginals are independent. It is seen
that the longer the period of time, the greater the variability of the power mixture.
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• Random sums. When the distribution of W is integer valued we obtain the random sum X = Y1 + · · ·+
YW , namely the W -fold convolution of Y . It is an appropriated model for non homogeneous population
and it is used in a wide range of statistical fields, as mixed Poisson in econometrics.

Branching processes are also concerned with power mixtures and have important applications in
genetics. Writing Wn the number of members of the nth generation in a branching process (with
W0 = 1) we have Wn+m = Y1 + · · · + YWn where Yi is the number of members of the (n + m)th
generation which stem from the ith member of the m generation (see for instance [5]).

Despite various applications, it seems that little work has been done on approximations to density (or distribution
function) of power mixtures. Interests are more often focused on scale mixtures; that is, the product YW ,
for which asymptotic polynomial expansions and error bounds are explored in many papers (see for instance
[10]). Note that scale mixtures may be seen as a particular case of power mixtures in the context of Normal
distributions. Indeed, the conditional distributions of W 1/2Y |W and Y ∗W |W are the same when Y has centered
normal distribution (see Rem. 3.3). In that case, if W is close to 1 then it is to be expected that the distribution
of YW will be close to that of Y ’s. Error bounds for the distance of the distribution of YW from its parents
are given in many papers. Also polynomial expansions are examined (see [8, 19], for the normal case and [7],
for the multivariate case).

Our paper is in the continuation of such works. We are first interested in finding polynomial expansion of
the density of a power mixture when Y is an infinitely divisible r.v. with distribution in quadratic NEF. In that
case, orthogonal polynomials are obtained by differentiations of the density. This particular construction refers
these polynomials to the Meixner class (see Meixner, 1934, [15]). Their properties allow some simplifications of
the polynomial expansion of the density of Y ∗W . More precisely, writing h(x) = f

Y ∗W (x)

fY (x) we have (see Th. 2.1
below)

h(x) = 1 +
∑
n≥1

E

(
∂n

∂mn
{L(ψ(m))W−1}

)
Qn(x)

‖Qn(x)‖2
,

where L is the Laplace transform of Y , ψ is the inverse of the gradient of logL and {Qn} are associated Meixner
polynomials.

These expansions can be used in different ways. By truncation, one can approach the density of power
mixture. Also, these expansions may be used to obtain inequalities measuring the proximity between the
distributions of Y and Y ∗W . Polynomial expansions of mixed distributions can also be deduced and estimations
may be envisaged. As a direct application we finally construct a goodness-of-fit test based on the density
expansion.

The paper is organized as follows. In Section 2 we introduce the notion of quadratic NEFs and their associated
polynomials. Section 3 presents expansions for densities of power mixture for infinite divisible distribution in
quadratic NEFs. Multivariate extensions are also indicated. In Section 4 we have detailed different cases of
power mixtures. Section 5 is devoted to the study of the distance between power mixture and their parents
distributions. Truncations of the expansions are also considered for approximations. In Section 6 we indicate
how these results may be used to estimate the density of a power mixture and to construct a goodness-of-fit
test.

1. Quadratic natural exponential families

In this section we point out some definition concerning the exponential families (see [2], or [12], for more
details). Let µ be a positive measure on R, which is not a Dirac mass and such that the interior of the domain
of its Laplace transform, denoted by Θµ, is not empty. Write

Lµ(θ) =
∫

exp(θx)µ(dx) and kµ(θ) = log(Lµ(θ)),
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Table 1. Relations for cumulant functions: µ = generating measure, kµ = cumulant, ψµ =
inverse of kµ, fµ = density w.r.t. µ.

NEF F (µ) µ(dx) kµ(θ) ψµ(m) fµ(x,m)
Normal exp(−x2/(2σ2))√

2πσ
θ2σ2/2 m/σ2 exp{(2xm−m2)/(2σ2)}

Poisson
∑
δn(dx)/n! exp(θ) log(m) exp{log(m)x −m}

Gamma xλ−1/Γ(λ)(dx) −λ log(−θ) −λ/m exp{−λ x
m +λlog( λ

m )}
Negative
binomial

∑
(
λ+ n− 1

n
)δn(dx) −λ log(1 −exp(θ)) log( m

λ+m ) exp{log(m/(λ + m))x +
λ log(1 −m/(λ+m))}

for the Laplace transform and the cumulant function of µ and denote by ψµ the inverse function of the gradi-
ent k′µ. The natural exponential family (NEF) generated by µ is the set

F = {P (m,F );m ∈MF = k′µ(Θµ)},

where each P (m,F ) is a probability with mean m and with density w.r.t. µ given by

fµ(x,m) = exp{ψµ(m)x − kµ(ψµ(m))}. (2)

Note that the generating measure µ is not necessary a probability measure. Moreover a NEF F can be generated
by all its elements, i.e. F = F (P (m,F )), for all m ∈ MF . If ν = P (m0, F ) ∈ F (µ) we have the following
straightforward relations:

kν(θ) = kµ(θ + ψµ(m0)) − kµ(ψµ(m0)) (3)

fν(x,m) = fµ(x,m)(fµ(x,m0))−1. (4)

The variance of P (m,F ) is denoted by VF (m) and VF is called the variance function of F . Note that the variance
VF (m) coincide with the hessian k′′µ(ψµ(m)). The family F is said to be quadratic if its variance function is a
second order polynomial, namely

VF (m) = am2 + bm+ c. (5)

This class of NEF is entirely described in [14] and it contains six types of families distributions. In Table 1
we have compiled some basic facts concerning the distributions the most used. In this table, the densities
fµ(x,m) is considered w.r.t. a generating measure µ. For instance, in the normal case we have µ(dx) =
exp{−x2/(2σ2)}(2πσ2)−1/2 and fµ(x,m) = exp{(2mx −m2)/(2σ2)} is the density of the normal distribution
with mean m w.r.t. to µ. If m coincides with the mean of µ then we have fµ(x,m) = 1.

Associated orthogonal polynomials are constructed by deriving successively the density of P (m,F ). More
precisely for all (m,n) ∈MF × N, we define

Qn(x,m0) =
∂n

∂mn
{fµ(x,m)}|m0/fµ(x,m0), (6)

=
∂n

∂mn
{fν(x,m)}|m0 , where ν = P (m0, F ), (7)
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Table 2. Some classical orthogonal polynomials.

Name Notation First terms Recurrence relations
Hermite Hn H0 = 1 2xHn(x) = Hn+1(x) + 2nHn−1(x)

H1(x) = 2x

Charlier Cα
n Cα

0 = 1 xCα
n (x) = −αCα

n+1(x) + (n+ α)Cα
n (x)

(α > 0) Cα
1 (x) = (α− x)/α −nCα

n−1(x)
Laguerre Lα

n Lα
0 = 1 −xLα

n(x) = (n+ 1)Lα
n+1(x)

(α > −1) Lα
1 (x) = −x+ α+ 1 −(2n+ α+ 1)Lα

n(x)
+(n+ α)Lα

n−1(x)
Meixner Mc,β

n Mc,β
0 = 1 xMc,β

n (x) = Mc,β
n+1(x)

(first
type)

(c �= 1) Mc,β
1 (x) = x−βc/(1−c) +

(1 + c)n+ βc

1 − c
Mc,β

n (x)

(β ∈ R) +
cn(n+ β − 1)

1 − c
Mc,β

n−1(x)

Table 3. Some quadratic NEFs, their variance functions and their orthogonal polynomials.

NEF F VF (m) Polynomials Qn(x,m) ‖Qn(.,m)‖2

Normal σ2 (2σ2)−n/2Hn(x/
√

2σ2)
(for m = 0)

n!σ−2n (for m = 0)

Poisson m Cm
n (x) n!m−n

Gamma m2/λ Lλ
n(λx/m) m−2nn!Γ(n+ λ)/Γ(λ)

Negative
binomial

m2/λ+m Mλ,(m)
n (x) λ−n(m2/λ+m)−nn!Γ(n+ λ)/Γ(λ)

which is a nth degree polynomial in x. If F is a quadratic NEF on R, the sequence (Qn(x,m0))n∈N forms a
P (m0, F ) orthogonal basis (see [4]); that is,∫

Qn(x,m0)Qk(x,m0)P (m0, F )dx = 0 if n �= k.

Note also that such a construction of orthogonal polynomials is valid only for quadratic NEF which justify our
restriction here. Moreover, each density fµ(x,m) may be expressed as a series expansion depending on these
polynomials. Classical orthogonal polynomials are described in Table 2 to make the paper self-contained (see
[14] and [11], for notation). Since we will use the mean parametrization for the negative binomial distribution,
we will write Mλ,(m) instead of Mλ,c for associated Meixner polynomials where c = m/(λ + m). The norms
‖Qn(.,m)‖2 =

∫
Q2

n(x,m)P (m,F )(dx), are given in Table 3.
Let us mention a technical lemma useful for the following (see [1])

Lemma 1.1.
i) The Laguerre polynomials satisfy

|Lλ
n(λx/m)| ≤ Γ(n+ λ)

Γ(λ)
λ−n exp(λx/2m).
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ii) The Hermite polynomials satisfy

|H2n(x)| < exp(x2/2)22nn!.

2. Polynomial expansions

2.1. Expansion for quadratic NEF on R

Let F = F (µ) be an infinitely divisible NEF on R and let Y be a r.v. with distribution ν in F . It excludes the
binomial case which is not infinitely divisible. Then our next result will cover the infinitely divisible quadratic
NEFs: normal, Poisson, negative binomial, gamma and hyperbolic ones. Assume that W is a non negative r.v.
independent of Y . According with (2) we denote by fµ(.,m0) the density of Y w.r.t. the measure µ.

Theorem 2.1. Let F = F (µ) be an infinitely divisible quadratic NEF on R. Let Y be a r.v. with distribution
ν = P (m0, F ) and with density fµ(x,m0) w.r.t. µ and assume that W is a non-negative r.v. independent of Y .
If the series

∑
n>0 ∂

n/∂mnE(Lν(ψν(m))W−1)|m0/‖Qn(.,m0)‖ converges in l2(N), then the density of Y ∗W with
respect to µ can be written as

fY ∗W (x) = fµ(x,m0)

⎡⎣1 +
∑
n≥1

∂n

∂mn
[E(Lν(ψν(m))W−1)]|m0

Qn(x,m0)
‖Qn(.,m0)‖2

⎤⎦
where ∂n/∂mn(.)|m0 denotes the nth derivative w.r.t. m taken in m0 and Qn(x,m0) are ν-orthogonal polyno-
mials defined by (6).

Proof. Writing f = fY ∗W /fµ(.,m0) the density of Y ∗W w.r.t. ν we have the following expansion

f(x) =
∑
n∈N

∫
Qn(y,m0)f(y)ν(dy)Qn(x,m0)/‖Qn(.,m0)‖2.

By construction of the orthogonal polynomials Qn we have

f(x) =
∑
n∈N

∫
∂n

∂mn
fµ(y,m)|m0f(y)µ(dy)Qn(x,m0)/‖Qn(.,m0)‖2

=
∑
n∈N

∂n

∂mn

∫
fµ(y,m)f(y)µ(dy)|m0Qn(x,m0)/‖Qn(.,m0)‖2

=
∑
n∈N

∂n

∂mn

∫
fµ(y,m)
fµ(y,m0)

fY ∗W (y)µ(dy)|m0Qn(x,m0)/‖Qn(.,m0)‖2

=
∑
n∈N

∂n

∂mn

[∫
exp{(ψµ(m) − ψµ(m0))y − (kµ(ψµ(m)) − kµ(ψµ(m0)))}

fY ∗W (y)µ(dy)
]
|m0Qn(x,m0)/‖Qn(.,m0)‖2,
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the second equality being a consequence of our assumptions. From (1) it follows that

f(x) =
∑
n∈N

∂n

∂mn

[ ∫
exp{kν(ψµ(m) − ψµ(m0))y − (kµ(ψµ(m)) − kµ(ψµ(m0)))}

fW (y)µ(dy)
]
|m0Qn(x,m0)/‖Qn(.,m0)‖2,

which establishes the formula combined with (3). �
Theorem 2.1 gives a way of evaluating and approximating the power mixture density. It is understood that

the validity of the expansion has to be studied case by case and we indicate how this result may be used in the
following sections.

Remark 2.2. Writing Λ(m,m0) = kµ(ψµ(m)) − kµ(ψµ(m0)), we may rewrite Theorem 2.1 as

fY ∗W (x) = fµ(x,m0)

⎡⎣1 +
∑
n≥1

∂n

∂mn
[E(exp{(W − 1)Λ(m,m0)})]|m0

Qn(x,m0)
‖Qn(.,m0)‖2

⎤⎦ ·

Remark 2.3. Clearly, the choice of the reference measure µ modifies the values of the coefficients in Theo-
rem 2.1. The measure µ can be chosen as the parent probability measure associated to Y ; that is, µ = ν, in
order to evaluate the distance between the power mixture and its parent distribution. We illustrate this fact in
the next sections.

2.2. Multivariate extension

On Rd, the generalization of the class of quadratic NEFs is called the class of simple quadratic NEFs and is
characterized by variance functions having the form:

VF (m) = am⊗m+B(m) + C,

where m = (m1, · · · ,md), a is real, B is a linear map, and C is a positive symmetric matrix. These families are
described in [3]. Moreover, the polynomials given by (6) are generalized as follows: assume that F is a simple
quadratic NEF and let A be an invertible matrix such that A−1VF (m) tA−1 = I, where I denotes the identity
matrix. For n = (n1, · · · , nd) ∈ Nd and x = (x1, · · · , xd) ∈ Rd, define

QA,n(x,m) =
D

(n)
A fµ(x,m0)
fµ(x,m0)

, (8)

where D(n)
A fµ(x,m) is the |n| = n1 + · · · + ndth derivative of m �→ fµ(x,m) in the |n|th directions Ae1 (n1

times), · · · , Aed (nd times). Here (e1, · · · , ed) denotes the canonical basis of Rd. Then the sequence (QA,n)n∈Nd

forms a P (m0, F )-orthogonal basis of polynomials (see [15]). We are thus led to the following generalization of
Theorem 2.1:

Theorem 2.4. Let F = F (µ) be an infinitely divisible simple quadratic NEF on Rd and let Y be a r.v. with
distribution ν = P (m0, F ) and with density fµ(x,m0) w.r.t. µ. Let W be a real non-negative r.v. independent
of Y and let QA,n(x,m0) be the ν-orthogonal polynomials given by (8). If the series D(n)

A E(Lν(ψν(m))W−1)|m0/
‖Qn(.,m0)‖ converges in l2(N), then the density of Y ∗W with respect to µ can be written as

fY ∗W (x) = fµ(x,m0)

⎡⎣1 +
∑
n≥1

D
(n)
A [E(Lν(ψν(m))W−1))]|m0

QA,n(x,m0)
‖QA,n(.,m0)‖2

⎤⎦ ·
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Examples of multivariate polynomials QA,n can be found in [15] and their norms ‖QA,n(.,m0)‖2 are given in
[16].

3. Some illustrations: normal, gamma, negative binomial and Poisson power

mixtures.

We give illustrations of Theorem 2.1 in the normal, gamma, Poisson and negative binomial cases. They are
consequences of Tables 1-3. Since the convergence of the series depends on the choice of the distribution of
W , we will give general results under boundedness conditions for W . We follow Table 2 for notation about
orthogonal polynomials.

Proposition 3.1. Let µ be the normal distribution N (0, σ2) and let Y be µ distributed (i.e. µ = ν). Let W be
a non negative r.v. independent of Y . If W < 2 almost surely and if E[(1 −W/2)−1/2] < +∞ then the density
of Y ∗W is given by:

fY ∗W (x) = fY (x)

⎧⎨⎩1 +
∑
n≥1

E((W − 1)n)
n!

H2n(x/
√

2σ2)

⎫⎬⎭ ,

where Hn denote the associated Hermite polynomials.

Proof. Since m0 = 0 we have fµ(x,m0) = 1 and we get Lν(ψν(m)) = exp(m2/(2σ2)). Under convergence
conditions we can apply Theorem 2.1 to obtain (w.r.t. the measure µ):

fY ∗W (x) =
∑
n≥0

∂n

∂mn
[E(Lν(ψν(m))W−1)]|m=0

Qn(x,m0)
‖Qn(.,m0)‖2

=
∑
n≥0

∂n

∂mn
[E(exp{(W − 1)m2/(2σ2)})]|m=0(2σ2)−n/2Hn(x/

√
2σ2)σ2n/n!.

The nth derivative ∂n

∂mn [E(exp{(W − 1)m2/(2σ2)})]|m=0 is a nth polynomial in m taken in m = 0. Its value
is obtained by recurrence and is equal to E{((W − 1)/(2σ2))k}(2k)!/k! if n = 2k and vanishes otherwise. Our
next goal is to prove the convergence of the series. A slight change in the proof of Theorem 2.1 shows that

∂n

∂mn [E(exp{(W−1)m2/(2σ2)})]|m=0 = E(Qn(Y ∗W ,m0)), which is equal to (2σ2)−n/2E(Hn(Y ∗W /
√

2σ2). Hence
the convergence of the series ∂2n

∂m2n [E(exp{(W − 1)m2/(2σ2)})]|m=0/‖Q2n(.,m0)‖ in l2(N) is equivalent to the
convergence of the series

∑
n∈N

E2(H2n(Y ∗W /
√

2σ2))/(22n(2n)!). From Lemma 1.1-ii) we have∑
n∈N

E2(H2n(Y ∗W /
√

2σ2))/(22n(2n)!) ≤
∑
n∈N

E(H2
2n(Y ∗W /

√
2σ2)/(22n(2n)!)

≤ E(exp{Z2/(4σ2)})
∑
n∈N

n!
(2n)!

,

where Z = Y ∗W . Of course, the series on the right hand side converges. Moreover the conditional distribu-
tion Z/

√
4σ2|W has centered normal distribution with variance W/4. Using the Laplace transform of the χ2

distribution we get

E[E(exp{Z2/(4σ2)}|W )] = E[(1 −W/2)−1/2] < +∞,

as soon as W < 2 almost surely and if E[(1 −W/2)−1/2] exists. �
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Example 3.2. To illustrate Proposition 3.1 we may consider W uniformly distributed on (0, 1). Then we get
fY ∗W (x) = fY (x){1 +

∑
n≥1 H4n(x/

√
2σ2)/(2n+ 1)!}.

Remark 3.3. Scale mixtures and power mixtures coincide in the normal case. Indeed, if Y has centered normal
distribution with variance σ2 it clear that the density of the scale mixture W 1/2Y is exactly the density of the
power mixture Y ∗W . Then our result coincides with the one given in [8] (Th. 1), with the standard notation
Hen(x) = 2−n/2Hn(x/

√
2) and fixing σ = 1. Note also that the condition W < 2 coincides.

Proposition 3.4. Let Y have gamma distribution with mean m0 > 0 and with form parameter λ > m0 and let
W be a non negative r.v. independent of Y . If there exists M > 0 such that W < M almost surely then

fY ∗W (x) = fY (x)

⎧⎨⎩1 +
∑
n≥1

E(V · · · (V − n+ 1))(m0)−nLλ
n(λx/m0)/‖Lλ

n‖2

⎫⎬⎭ ,

where V = λ(W − 1) and Lλ
n denote the Laguerre polynomials.

Proof. Applying Theorem 2.1 combined with Table 1 we get the assertion under the convergence condition.
From Lemma 1.1 i) we have∣∣∣∣∣∣
∑
n≥1

E(V · · · (V − n+ 1)(m0)−n)Lλ
n(λx/m0)/‖Lλ

n‖2

∣∣∣∣∣∣ ≤ exp(λx/2m0)
∑
n≥1

|E(V · · · (V − n+ 1))|(m0/λ)n/n!

≤ exp(λx/2m0)E(
∑
n≥1

|V · · · (V − n+ 1)|)(m0/λ)n/n!

= exp(λx/2m0)E

⎛⎝∑
n≥1

un

⎞⎠ ,

where un = |V · · · (V − n + 1)|(m0/λ)n/n! ≤ Γ(|V | + n)(m0/λ)n/(Γ(|V |)n!) ≡ vn. Since vn+1/vn → m0

λ
< 1

almost surely then the series converges. �
Proposition 3.5. Let Y have negative binomial distribution with mean m0 > 0 and with convolution parameter
λ > 0 and let W be a non-negative r.v. independent of Y . If there exists M > 0 such that W < M almost
surely then

fY ∗W (x) = fY (x)

⎧⎨⎩1 +
∑
n≥1

E(V · · · (V − n+ 1))(λ+m0)−nMλ,(m0)
n (x)/‖Mλ,(m0)

n ‖2

⎫⎬⎭ ,

where V = λ(W − 1) and Mλ,(m0)
n are Meixner polynomials.

Proof. The polynomial expansion is a direct consequence of Theorem 2.1 and Table 1. We prove the convergence
of the series. Consider the series∑

n∈N

{
E(V · · · (V − n+ 1))(λ+m0)−n/‖Mλ,(m0)

n (x)‖
}2

≤ E

{∑
n∈N

(V 2 · · · (V − n+ 1)2)(λ+m0)−2n/‖Mλ,(m0)
n (x)‖2

}
= E

(∑
un

)
,
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where un = V 2 · · · (V − n + 1)2(λ + m0)−3nλnm2n
0 Γ(λ)/(Γ(λ + n)n!) ≤ Γ(|V | + n)2(λ + m0)−3nλnm2n

0 Γ(λ)/
(Γ(|V |)2Γ(λ+ n)n!) ≡ vn. Since vn+1/vn → λm2

0/(λ+m0)3 < 1 almost surely then the series converges. �
Proposition 3.6. Let Y have Poisson distribution with mean m0 > 0 and let W be a non negative r.v.
independent of Y . If E(exp(W 2)) < +∞ then we have

fY ∗W (x) = fY (x)

⎧⎨⎩1 +
∑
n≥1

E((W − 1)n)Cm0
n (x)/n!

⎫⎬⎭ ,

where Cm0
n denote Charlier polynomials.

Proof. We have ∑
n∈N

{E((W − 1)n)}2/n! ≤
∑
n∈N

E(W − 1)2n/n!

= E(exp(W − 1)2)
< +∞.

Then the convergence condition of Theorem 2.1 are satisfied and the result follows from Table 1. �

4. Some approximations and error bounds

As said before, many papers deal with the error bounds for asymptotic expansions in scale mixtures. Some
bounds concern distance between approximations and mixture density (see for instance [21]). Some other bounds
concern distance between mixtures and parent distributions (see [8]). In the same way, we are interested in
finding error bounds for the difference between the density fY ∗W and its parent distribution, or its approximation
f

[k]
Y ∗W defined for k ∈ N by

f
[k]

Y ∗W (x) = fµ(x,m0)

{
1 +

k∑
n=1

∂n

∂mn
[Lν(ψν(m))W−1]|m0

Qn(x,m0)
‖Qn(.,m0)‖2

}
,

where µ is given in Table 1.
By definition, for k = 0, we write f [0] = fY . As a basic example, for the gamma distribution with mean m0

and with scale parameter s = λ/m0 we have

f
[2]
Y ∗W (x) = exp{−sx}(s)λ{1 + E(V )(−x+ s+ 1)/(m0)

+E(V (V − 1))(x2 − 2x(s+ 2) + 4(s+ 1))/(m2
0)},

where V = λ(W − 1).
For the Poisson distribution with mean m0 we have

f
[2]

Y ∗W (x) = mx
0 exp{−m0}{1 + E(W − 1)(m0 − x)/(m0)

+E((W − 1)2)((x −m0 − 1)(x−m0) − 1/m0)}.
For the normal distribution with mean 0 and variance σ2 we have

f
[2]

Y ∗W (x) = 1 + E(W − 1)
2x2 − 1
σ2

·

The error bounds will be evaluated in the L1 norm, as done in [20] for scale mixtures (see also the more general
distance given in [10]) and in the L∞ norm (following [8]).
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4.1. L1 error bound for gamma and Poisson densities

As noted in Remark 3.3, Normal power mixtures are equivalent to normal scale mixtures and many works
have been done on this topic (for instance see [8]). Therefore we will not develop this point here and we will
restrict our attention to gamma and Poisson power mixtures.

Proposition 4.1. Let Y have gamma distribution with mean m0 and with shape parameter λ > m0 and let W
be a non negative r.v. independent of Y . Assume that there exists M > 0 such that W < M almost surely.
Then:

i) We have, for all integer k,∫
|fY ∗W (x) − f

[k]
Y ∗W (x)|µ(dx) ≤ E(P (U > k|V )(1 −m0/λ)−|V |) 2λ,

where U |V has negative binomial distribution with convolution parameter |V | = |λ(W − 1)| and with mean
1 −m0/λ.

ii) Denote by FY ∗W the distribution functions associated to the variables Y ∗W , and by F [k]

Y ∗W its associated
kth truncation. We have, for all integer k,

|FY ∗W (x) − F
[k]

Y ∗W (x)| ≤ H(x)E{P (U > k|V )(1 −m0/λ)−|V |} 2λ,

where H denote the gamma distribution functions with parameters λ and mean 2m0 and |V | = |λ(W − 1)|.
Proof. Write P (m0, F ) the distribution of Y where F = F (µ). Using Proposition 3.4 and Lemma 1.1 i) we
obtain∫

|fY ∗W (x) − f
[k]

Y ∗W (x)|µ(dx) =
∫ ∣∣∣∣∣∑

n>k

E(V · · · (V − n+ 1))m−n
0 Lλ

n(λx/m0)/‖Lλ
n‖2

∣∣∣∣∣ fµ(x,m0)µ(dx)

≤
∫ ∑

n>k

E|(V · · · (V − n+ 1))mn
0 (n!λn)−1| exp(λx/2m0)fµ(x,m0)µ(dx)

=
∫ ∑

n>k

E|(V · · · (V − n+ 1))mn
0 (n!λn)−1| 2λ γ(λ, 2m0)(dx)

=
∑
n>k

E|(V · · · (V − n+ 1))mn
0 (n!λn)−1| 2λ

≤
∑
n>k

E

(|V |+n−1
|V |−1

)
(m0/λ)n 2λ

where γ(λ, 2m0) denotes the gamma measure with mean 2m0 and shape parameter λ. �
Example 4.2. For k = 0, Proposition 4.1 i) gives a bound for the L1 distance of the mixture Y ∗W and its
parent distribution Y . We obtain∫

|fY ∗W (x) − fY (x)|µ(dx) ≤ 2λ {E((1 −m0/λ)−|V |) − 1}.

For instance, if W has uniform distribution on [a, b] (1 ≤ a < b) then we obtain∫
|fY ∗W (x) − fY (x)|µ(dx) ≤ 2λ

{
Cv − Cu

log(C)(v − u)
− 1

}
,

where C = λ/(λ−m0), u = λ(a − 1) and v = λ(b − 1).
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For k = 0 we can also deduce a bound for the Kolmogorov distance between Y ∗W and Y ; that is,

sup
x>0

|FY ∗W (x) − FY (x)| ≤ {E((1 −m0/λ)−|V |) − 1}λ(2(λ− 1))λ−1

mΓ(λ)
exp(−λ(λ− 1)).

We now consider error bounds for Poisson power mixtures:

Proposition 4.3. Let Y have Poisson distribution with mean m0 > 1 and let W be a non-negative r.v.
independent of Y . Assume that E(exp(W 2)) < +∞. Then we have, for all integer k,

∫
|fY ∗W (x) − f

[k]
Y ∗W (x)|µ(dx) ≤

[
E(exp{(W − 1)2} − 1)

m−k
0

m0 − 1

]1/2

.

Proof. Using Proposition 3.6 and combining the Jensen and the Cauchy Schwarz inequalities we obtain:∫
|fY ∗W (x) − f

[k]

Y ∗W (x)|µ(dx) =
∫ ∣∣∣∣∣∑

n>k

E((W − 1)n)Cm0
n (x)/n!

∣∣∣∣∣ fµ(x,m0)µ(dx)

≤
[∑

n>k

E((W − 1)2n)/n!
∑
s>k

∫
(Cm0

s (x))2fµ(x,m0)µ(dx)/s!

]1/2

≤
[
E(exp{(W − 1)2} − 1)

∑
s>k

m−s
0

]1/2

=
[
E(exp{(W − 1)2} − 1)(m−k

0 /(m0 − 1))
]1/2

. �

4.2. Error bound for uniform distance: the case of gamma power mixture

Proposition 4.4. Suppose that Y has gamma distribution with mean m0 and with shape parameter λ > m0.
Assume that there exists M > 0 such that 0 < W < M almost surely. Write fY ∗W the density of Y ∗W w.r.t.
the Lebesgue measure on R+ and f [k]

Y ∗W its kth approximation. Then, for all integer k, we have

|fY ∗W (x) − f
[k]
Y ∗W (x)| ≤

∑
n>k

|E(V · · · (V − n+ 1))|(m0/λ)n−λ exp(−λx/2m0)
xλ−1

Γ(λ)n!
,

where V = λ(W − 1).

Proof. Similar to the proof of Proposition 4.1. �
Corollary 4.5. Under the hypothesis of Proposition 4.4 we have, for all k ∈ N

sup
x∈R+

|fY ∗W (x) − f
[k]

Y ∗W (x)| ≤
∑
n>k

|E(V · · · (V − n+ 1))|(m0/λ)n−1 exp(−(λ− 1))
2(λ− 1)λ−1

Γ(λ)n!
,

where V = λ(W − 1).

5. Applications

5.1. Estimation

From now on we make the assumption that Y has known distribution and W has unknown distribution.
Note that the model is not identifiable if both fY and fW are unknown. One can observe that the expansions
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obtained in Propositions 3.1-3.6 depend on the moments of W . More precisely, the k-order truncations f [k]
Y ∗W

of fY ∗W depend on the first k moments of W . It may give a way for estimating f [k]

Y ∗W by using estimates of the
moments of W . The case k = 2 is worked out in detail but the argument can be generalized to any integer.

Assume that X1, · · · , Xn are i.i.d. with power mixture distribution defined by (1). We check at once
that E(X) = E(Y )E(W ) and Var(W ) = Var(X)/E(Y 2) − Var(Y )E(X)/E(Y 3), which is clear by deriving
(1) (see also [10]). Highest moments of W can be expressed in the same manner. Hence we can deduce
consistent and unbiased estimators for the moments of W . For instance T1 = X̄/E(Y ) (for E(Y ) �= 0) and
T2 = X2/E(Y )2 − X̄Var(Y )/E(Y )3 estimate the mean and the second moment of W , where X̄ =

∑
Xi/n and

X2 =
∑
X2

i /n.
An easy computation shows the following result:

Proposition 5.1. Under the hypotheses of Theorem 2.1, we have

f̂Y ∗W

[2]
(x) = 1 + â1ψ

′(m0)Q1(x,m0)/‖Q1(.,m0)‖2

+{â2ψ
′(m0)2 + â1ψ

′′(m0)}Q2(x,m0)/‖Q2(.,m0)‖2,

where â1 and â2 are empirical estimators of a1 = E(W − 1) and a2 = E((W − 1)(W − 2)), respectively.

We give three basic examples:

Normal power mixture. If Y has normal distribution with mean m0 �= 0 and with variance σ2 > 0 then we can
estimate f [2]

Y ∗W by

f̂Y ∗W

[2]
(x) = fµ(x,m0)

{
1 + (X̄ −m0)(x2 + 2m0x− σ2)

1
2m0σ2

+(X2m0 − X̄σ2 − 2X̄ +m0 +m3
0)(x

2 − σ2)
1

2m2
0σ

4

}
·

Gamma power mixture. If Y has gamma distribution with mean m0 and with scale parameter s = λ/m0 we
can estimate f [2]

Y W by

f̂Y ∗W

[2]
(x) = fµ(x,m0){1 + (sX̄ − λ)(−x+ s+ 1)/(m0)

+(s2X2 + (λ− 2sX̄(1 + λ))(x2 − 2x(s+ 2) + 4(s+ 1))/(m2
0)}.

Poisson power mixture. If Y has a Poisson distribution with mean m0 we can estimate f [2]

Y ∗W (x) by

f̂Y ∗W

[2]
(x) = fµ(x,m0){1 + (X̄ −m0)(m0 − x)/m2

0

+(X2/m2
0 − X̄/m2

0 − 2X̄/m0 + 1)((x−m0 − 1)(x−m0) − 1/m0)}.

The mean integrated square error (MISE) may be used to evaluate the quality of these approximations. The
MISE is defined by

MISE(k) = E{‖fY ∗W (.) − f̂Y ∗W

[k]
(.)‖2}.

We have the following property which may be generalized for all k > 2:

Proposition 5.2. The MISE(2) tends to ‖fY ∗W (.) − f
[2]

Y ∗W (.)‖2, a.s.
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Figure 3. Densities of a normal power mixture with two components, its second order ap-
proximation and its parent distribution.

Proof. By orthogonality, it is easy to check that there exists coefficients αn such that

MISE(2) = ‖fY ∗W (.) − f
[2]
Y ∗W (.)‖2 + ‖f [2]

Y ∗W (.) − f̂Y ∗W

[2]
(.)‖2

= ‖fY ∗W (.) − f
[2]

Y ∗W (.)‖2 +
2∑

j=1

αj(aj − âj)2,

and the MISE tends to ‖f(.) − f
[k]
Y ∗W (.)‖2 at the same rate as âj . �

As a numerical illustration, we consider a r.v. X = Y ∗W , where Y ∼ N(m,σ2) is normally distributed with
meanm = 0.5 and standard deviation σ = 0.5, andW is a combination of two Dirac distributions: (1−p)δ1+pδ2,
with p = 0.1. The true density of X , its second order approximation f̂Y ∗W

[2]
and its parent density are plotted

in Figure 3, with a sample size = 50. The true density is given by fY ∗W (x) = 0.1φ2m,2σ2(x) + 0.9φm,σ2(x),
where φm,σ2 stands for the normal density with mean m and variance σ2.

5.2. Goodness-of-fit test

Polynomial expansions of the power mixture density suggest the construction of a smooth test (see [17] for
the complete bibliography) to fit the distribution of W . Consider X1, · · · , Xn i.i.d. r.v. from a power mixture
having the form X = Y ∗W , where Y has known density. We wish to test

H0 : fW = f0 against H1 : fW �= f0,

where fW denotes the density of W . Let Zk = (z1, · · · , zk)T be the random vector with components

zj =
1√
n

n∑
i=1

{Qj(Xi) − E0(Qj(X))},

where {Qj(.), j = 1, 2, · · · } are orthogonal polynomials with respect to Y ; that is, Qj(.) = Qj(.,m0) for
simplicity, where m0 denotes the mean of Y . Here, E0 denotes the expectation under H0. We propose the test
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Figure 4. Normal-uniform power mixture Y ∗W , where Y ∼ N(0, 1), W ∼ U(1, 2). Percent-
ages of rejection of the null hypothesis H0 : W ∼ U(1, 2), against W ∼ U(0, 3), when data are
sampled form the alternative with significance level α = 5%.

statistic

Tk = ZT
k Σ(k)−1Zk,

where Σ(k) is a k × k symmetric matrix with components

Σij(k) = E0(Qi(X)Qj(X)) − E0(Qi(X))E0(Qj(X)),

which can be estimated by consistent estimators. Imitating Theorem 2.1, if Y has distribution in a quadratic
NEF we obtain:

E0(Qi(X)) =
∂n

∂mn
[E0(Lν(ψν(m))W−1)]|m0 ,

and, combining Theorem 2.1 and the orthogonality of polynomials, for i ≤ j,

E0(Qi(X)Qj(X)) =
∑

i−j≤s≤i+j

E0(Qs(X))E0(Qs(Y )Qi(Y )Qj(Y ))/‖Qs(.)‖2.

Then we may compute Tk and use them for testing H0 as follows:

Proposition 5.3. Assume that X has finite moments of order 2k, for some integer k and suppose that H0

holds. Then the distribution of Tk is asymptotically (when n tends to infinity) central chi-squared with k degrees
of freedom.

To illustrate Proposition 5.3 we consider a power mixture of normal distributions, with density:

fY ∗W (y) =
∫ 2

1

(2πσ2)−1/2 exp{−y2/(2σ2)}d(σ2),

where W is uniformly distributed on (1, 2) and Y is normal distributed with mean 0 and variance 1. We test
H0 : W is uniform on (1, 2) against the alternative: W is uniform on (0, 3). We consider tests based on T3 and
T4. Data are sampled from the alternative with a significance level α = 5%. The percentages of rejection are
summarized in Figure 4, based on 10000 simulations, for sample sizes n = 30, 50, 100, 200.
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