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STATISTICAL TOOLS FOR DISCOVERING PSEUDO-PERIODICITIES
IN BIOLOGICAL SEQUENCES
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Abstract. Many protein sequences present non trivial periodicities, such as cysteine signatures and
leucine heptads. These known periodicities probably represent a small percentage of the total number
of sequences periodic structures, and it is useful to have general tools to detect such sequences and
their period in large databases of sequences. We compare three statistics adapted from those used in
time series analysis: a generalisation of the simple autocovariance based on a similarity score and two
statistics intending to increase the power of the method. Theoretical behaviour of these statistics are
derived, and the corresponding tests are then described. In this paper we also present an application
of these tests to a protein known to have sequence periodicity.
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1. Introduction

Molecular biology deals with sequences of letters and mathematical tools are requested for automatic analysis
of large sequence or set of sequences now available. Proteins are such sequences written in a 20 letter alphabet
– the amino-acid (a.a.) alphabet. It is well known that the spatial folding of these molecules strongly depends
on the sequence of a.a. For instance membrane proteins present a periodic structure of hydrophobic a.a. (for
the segments inside the membrane) and hydrophilic a.a. (for the segments outside). Other examples are the
leucine heptads in coiled-coil proteins, repeated cysteines and histidines signatures in zinc finger knots, whose
analysis has been a long standing problem in computational molecular biology. The difficulty lies in the fact
that repeats often show weak similarities due to evolutionary divergence, such that they are only recognised
from a sensitive self comparison. In this paper we propose a procedure to identify the existence of a periodic
structure with a random variation. If repeated motifs are present, even with some variation, they could also be
detected by such tools.

Two methods have dominated the effort to identify general periodic structures. The first one is based on the
dot-plot method which consists in reporting in a 2-way picture a point in (i, j) if the a.a. in positions i and j
are similar according to a given criterion. Such a dot-plot often shows a characteristic pattern that allows to
deduce the existence of repeats by visual inspection [4, 6]. Boguski [3] used sophisticated sequence comparison
methods to refine the dot-plot of the self-comparison and Heringa and Argos [14] applied clustering techniques

Keywords and phrases: Biological sequences, proteins, periodicity, autocovariance funtion.

1 Laboratoire Statistique et Génome, URA 8071 du CNRS, La Génopole, Université d’Evry, France;
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Figure 1. Human Apolipoprotein E. Dot-plot of points (i, j) such as the entry in the matrix
PAM250 corresponding to X(i) and X(j) is greater than or equal to 2.

Figure 2. Fourier transform for the hydrophobicity of the human Apolipoprotein E. It is
plotted as a function of the period p. The lower horizontal line indicates the expectation µ of
the Fourier transform; the higher one indicates the level µ plus twice its standard deviation.
No point appears to be significative. Note that a peak is almost significative for p = 12.

to the result of a sequence comparison. In Figure 1, we present the dot-plot corresponding to the protein that
we have chosen to illustrate our method, namely the human Apolipoprotein E (for more details see Sect. 4). It
appears rather difficult to “see” an obvious periodicity in this picture.

Alternatively, Fourier analysis can be applied to identify periodic features in a numerical vector chosen to
represent the amino acid sequence, for example the hydrophobicity values. Both methods have been applied by
McLachlan et al. [18–23]. The Fourier method was also applied to study the helical amphipaticity [7]. Figure 2
displays the Fourier transform of the same Apolipoprotein E when it is encoded using Ketty–Doolittle scale of
hydrophobicity, which is the most commonly used one.

Each of the two major approaches has its deficiencies and no method has resulted in a general, automatic
procedure to identify periodicities in sequences. Calculating a dot-plot still requires human interaction to
recognise the characteristic pattern associated with repeats. Furthermore, when the period is small (e.g. only
7 amino acids long as in the heptad repeat of coiled-coil proteins) the pattern of the dot-plot is hardly discernible.
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Converting the amino acid sequence into a numerical sequence in order to apply spectral analysis requires prior
assumptions about the physical significance of the repeated motifs in order to chose an encoding and even given
an encoding may produce only a weak signal.

Let us note that a third approach has been proposed by Coward [8]; for each possible period k, he searches
the k-periodic sequence which is the nearest of the considered one according to a given similarity between amino
acids.

In this paper, we propose an approach which adapts the autocovariance function to the case of protein
sequences [2, 5]. In time series analysis, a very simple way to evaluate dependence between a sequence Yt and
its shifted copy with lag k uses r(k) = E(YtYt+k)−E(Yt)E(Yt+k). We propose to replace in this definition the
product of real numbers Y Y ′ by a the score ϕ(X,X ′) measuring the similarity of the two amino-acids X and
X ′. Hence if a word W appears in a repetitive way – or appears with minor changes –, the original sequence
and its shifted version will give rise to a large value of the sum of scores of aligned amino-acids.

In the next section, we introduce this method more precisely and propose various statistics that are easy to
compute, which one can use to detect periodicities in protein sequences. The mathematical properties of the
proposed statistic are established Section 3. In Section 4, we first present an example of treatment of a protein
which is known to present a periodicity and then another one, treating a protein without any periodicity.

Even though derived from a simple model, our approach works generally very well on proteins. Several
violations of our assumptions are easily accommodated: neither small gaps on the repeated unit nor leading or
trailing sequences do much harm to the results. If the method is to be used to find repeated motifs, it will not
be able to detect repeats if there are only a few copies of the repeated unit, if their spacing is not uniform or if
the alignment of different copies of the repeated unit requires many insertions and deletions.

The complexity of our algorithm is of order of the square of the sequence length, comparable e.g. to that of
alignment algorithms. It is thus fast enough to analyse proteins of several thousand amino acids length without
frustrating waiting time.

2. Method

Time-series analysis deals with sequences of random variables Yt, where t takes integer values (say from 1
to n), and Yt is real valued. Assuming stationarity, the statistical analysis is then founded on the empirical
autocovariance function, which is defined as

c(k) =
1
n

∑
i

[YiYi+k − Ȳ 2]. (1)

If there is a “hidden periodicity” with period equal to some k0, then c(k0) will take a large value.
If we denote S = (X1, X2, . . . , Xn) the amino-acid sequence, the main difference between the classical setup

and our data setting lies in the fact that for each t the observation Xt is no more a real, but takes its value
within a finite alphabet A, the set of the 20 amino-acids. A possibility is to transform these values into real
numbers, as it is done in Fourier analysis (i.e. change an amino-acid into its hydrophobicity, for example).

It is much more convenient to avoid this step and to understand the fact that some c(k0) takes a large value
in (1) when Xt and Xt+k are similar. Actually, the comparison of amino-acids is very much used alignments
of protein sequences, and there are different possible scores quantifying “how similar” two amino-acids are: all
the PAM matrices introduced by Dayhoff [9], as well as BLOSUM matrices precisely describe this similarity
according to biological knowledge [13].

We then propose to define a statistic similar to the sample autocovariance given in (1):

Yn(k) =
1√
n

∑
i

[ϕ(Xi, Xi+k)− ϕ̂0] (2)



174 B. PRUM, É. DE TURCKHEIM AND M. VINGRON

where ϕ is a similarity score for amino-acids and ϕ̂0 is an estimation of ϕ0 = E(ϕ(X,X ′)) where X and X ′

are letters of A chosen independently with a common distribution. The n−1/2 normalisation factor is the
appropriated rate for the central limit convergence.

Based on such statistics, we wish to test the null hypothesis H0: the letters of the observed sequence S are
chosen independent according to a same distribution on A. In particular, under H0 there will be no periodicity
in S.

To carry out such tests, one must determine the distribution of the finite sequence of Yn(k) for k = 1, . . . ,K
– at least asymptotically, as n tends to infinity –, in order to determine the cut-off value u such that the test

H0 is rejected ⇐⇒ ∃ k0 , Yn(k0) ≥ u

has a fixed error value α.
If for a given k0, Yn(k0) is large and if the other Yn(k) are small, there is an evidence that there exists a

dependence between Xi and Xj with a lag k between i and j producing similar a.a. at k distant sites. In such
a case, Yn(k0) will be large as well as Yn(2k0), Yn(3k0) . . .

Large values of Yn(k) for many k would show another type of dependency between the Xi like that of
autoregressive time series.

It turns out that this asymptotic distribution is much easier to obtain if we consider the sequence of amino-
acids written on a circle; in other words the sum i+k is to be understood “modulo” n. For a rather long sequence
(typically in our examples n is between 300 and 2000 amino-acids), if we search rather short periodicities (say
between some units to 20), this convention does not change much the value of Yn(k). In other cases, the protein
(or a part of the protein) is constituted by 2 or 3 repetitions of a same long sequence, because a duplication of
part of its gene took place during the historical evolution. In such cases, “closing” the sequence is even useful,
taking into account the alignment of the last period with the first one.

The asymptotic behaviour of Yn(k) is given in the following theorem:

Theorem 2.1. If we denote by σ2 = Var(ϕ(X,X ′)) and by ρ2 = Var(α(X)) where α(x) = E(ϕ(x,X ′)), then,
under H0, when n tends to infinity, the finite sequence of the Yn(k) (for k = 1, · · · ,K) converges in distribution
to a sequence of independent centred Gaussian variables with same variance (σ2 − 2ρ2)2.

We can then consider three statistics for testing the presence of periodicities in a protein sequence:

1) we can compare Yn(k) to z times the computed standard deviation, where z is the suitable quantile of the
standard Gaussian N (0; 1);

2) if k0 is a period, then 2k0, 3k0, cdots are periods also. Hence we can introduce, for a fixed number of terms
J such as Jk ≤ n

Zn(k) =
J∑
j=1

Yn(jk).

We call Zn(k) the cumulated statistic. According to the asymptotic zero-correlation between the Yn(k),
Zn(k) will converge in distribution to a N (0;J (σ2 − 2ρ2)2);

3) another possible statistic is

Cn(h) =
1√
n

n−h∑
k=1

Yn(k) Yn(k + h) .
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We shall call this statistic the quadratic one. In the next section we prove that Cn(h) converges to a
Gaussian limit and we give its asymptotic variance.

Remark. As we do not consider applications where k would tend to infinity, we do not need to prove more
than finite dimensional convergence.

3. Mathematical proofs

Let X1, . . . , Xn be iid variables on a finite set A. We denote by µ their common distribution. We consider
a symmetrical score function

ϕ : A×A→ R, ϕ(a, b) = ϕ(b, a)

and we let

ϕ0 = E(ϕ(X,X ′)) σ2 = Var(ϕ(X,X ′))

α(x) = E(ϕ(x,X ′)) ρ2 = Var(α(X))

where X and X ′ are independent with distribution µ. Obviously, E(α(X)) = ϕ0. To have simpler results, we
“close” the sequence X1, . . . , Xi, . . . , Xn and consider that the index i lives on a torus, so that i = i+ n.

3.1. Asymptotic behaviour of Yn(k)

For k ≥ 1, we define Yn(k) as

Yn(k) =
1√
n

n∑
i=1

(ϕ(Xi, Xi+k)− ϕ̂0) ,

where

ϕ̂0 =
2

n(n− 1)

∑
i<j

ϕ(Xi, Xj).

We recall the following theorem ([24], pp. 192-194) of convergence in distribution for degenerate U -statistics,
which shows that the rate of convergence is n−1 (instead of n−1/2 for non degenerate statistics).

Theorem 3.1. Let Xi be iid for i = 1, . . . , n and let h(x, x′) be a symmetrical function such that

i 6= j ⇒ E(h(Xi, Xj)) = 0 and Var(h(Xi, Xj)) <∞.

Consider the U-statistic

Un =
2

n(n− 1)

∑
i<j

h(Xi, Xj).

If the “projection” of h(Xi, Xj) on Xi, which is defined as the conditional expectation

h̃(Xi) = E[h(Xi, Xj) | Xi],

is a constant (i.e. Var(h̃(Xi)) = 0), then nUn converges in distribution towards a (finite) random variable.
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We consider the degenerate U -statistics related to ϕ̂0 where ϕ(Xi, Xj) is replaced by ψ(Xi, Xj) with

ψ(Xi, Xj) = ϕ(Xi, Xj)− α(Xi)− α(Xj) + ϕ0.

Lemma 3.2. If i 6= j, then Var(ψ(Xi, Xj)) = σ2 − 2ρ2.
If {i, j} 6= {i′, j′}, then Cov(ψ(Xi, Xj), ψ(Xi′ , Xj′)) = 0.

This lemma immediately follows from the following identities:
Cov(ϕ(Xi, Xj), ϕ(Xi′ , Xj′)) = 0 if the four values (i, j, i′, j′) are all different,
Cov(ϕ(Xi, Xj), ϕ(Xi′ , Xj′)) = ρ2 when i = i′ and (i, j, j′) are different,
Cov(ϕ(Xi, Xj), ϕ(Xi′ , Xj′)) = σ2 when i = i′ and j = j′ (with i 6= j),
Cov(α(Xi), ϕ(Xi′ , Xj′)) = 0 if (i, i′, j′) are different and Cov(α(Xi), ϕ(Xi′ , Xj′)) = ρ2 when i = i′ or i = j′.
By elementary calculus, we can write Yn(k) using the ψ(Xi, Xj) as:

Yn(k) =
1√
n

n∑
i=1

ψ(Xi, Xi+k)− 2
(n− 1)

√
n

∑
i<j

ψ(Xi, Xj) .

In other words,

Yn(k) =
1√
n
Sn(k) +

√
n Un ,

where

Sn(k) =
n∑
i=1

ψ(Xi, Xi+k)

and
Un =

−2
n(n− 1)

∑
i<j

ψ(Xi, Xj) .

The projections of the terms involved in this U -statistic are zero:

ψ̃(Xi) = E(ψ(Xi, Xj)|Xi).

As Var(ψ(Xi, Xj)) = σ2 − 2ρ2 is finite, as a result of Theorem 3.1, nUn converges to a finite random variable.
Hence we have:

Lemma 3.3. When n tends to infinity, Un(k) = OP (n−1).

As a consequence, lim Yn(k) = lim
1√
n
Sn(k). For a fixed k, we can applied the following theorem to the

sequence ξi = ψ(Xi, Xi+k) ( [15], [10]):

Theorem 3.4. For a sequence of identically distributed variables ξi such that E(ξi) = 0, define Sn = ξ1 + ξ2 +

...+ ξn. If Var(Sn) = n σ2 + O(1), with σ2 > 0 and E(|ξi|2+δ) <∞ for some δ > 0, then
1√
n
Sn converges in

distribution to a Gaussian variable N (0;σ2).

As k is fixed, ξi and ξj are independent except when |i− j| = k, but even in this case

Cov(ξi, ξj) = 0.

Hence Var(Sn(k)) = nVar(ψ(Xi, Xi+k)) = n(σ2 − 2ρ2); as ξi is bounded, Theorem 3.4 implies:

Theorem 3.5. Yn(k) =
1√
n

n∑
i=1

(ϕ(Xi, Xi+k)− ϕ̂0) converges in distribution to a Gaussian variable N (0;σ2 −

2ρ2) .
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The same theorem applied on finite linear combinations
∑

akrYn(kr) shows the convergence of any finite
sequence (Yn(k1), . . . , Yn(kr)) to a vector of i.i.d. Gaussian variables. If we set Yn(k) = 0 for k > n, then the
process Yn(.) converges in distribution to a Gaussian white noise W (.) with variance equal to σ2 − 2ρ2.

It is important to note that this weak convergence of Yn(.) to W (.) does not imply the convergence of the

moments. In particular we will show in Theorem 3.8 that the “autocovariance” Cn(h) =
1√
n

n−h∑
k=1

Yn(k) Yn(k+h)

does not converge to the “autocovariance” of W (.), which is N (0; (σ2 − 2ρ2)2).

3.2. Asymptotic behaviour of Cn(h)

For h ≥ 1, we consider

Cn(h) =
1√
n

n−h∑
k=1

Yn(k) Yn(k + h).

Define

C̃n(h) =
1

n3/2

n−h∑
k=1

Sn(k) Sn(k + h).

Lemma 3.6. If C̃n(h) converges in distribution to a variable Z when n tends to infinity, then Cn(h) converges
to the same limit.

From Yn(k) =
1√
n
Sn(k) +

√
n Un, we have

Cn(h) = C̃n(h) + Un
1√
n

n−h∑
k=1

[Sn(k) + Sn(k + h)] + n3/2 U2
n.

From Lemma 3.3, we know that n3/2 U2
n is OP (n−1/2); this lemma and the convergence of n−1/2

∑
Sn(k)

implies, using Cauchy–Schwartz inequality, that the middle term of the right hand side also converges to zero.
Note that C̃n(h) can be written as

C̃n(h) =
1

n3/2

n−h∑
k=1

n∑
i=1

n∑
j=1

ψ(Xi, Xi+k) ψ(Xj , Xj+k+h).

We compute V = Var(C̃n(h)).
Let us consider the sequence (ξi,j,k) with indices in the cube [1, . . . , n]3

ξi,j,k = ψ(Xi, Xi+k) ψ(Xj , Xj+k+h).

To compute the variance of C̃n(h), we only have to consider terms of order n3 since terms of order less than n3

will disappear.
To each index, (i, j, k) corresponds the set A(i, j, k) of the points {i, i+k, j, j+k+h} involved in the calculus

of ξi,j,k. A systematic screening of all possible cases leads to the lemma:

Lemma 3.7. Cov(ξi,j,k, ξi′,j′,k′) = 0 except in only two cases:

1) A(i, j, k) contains 4 distinct points (i.e. #A(i, j, k) = 4), and A(i′, j′, k′) = A(i, j, k);
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2) #A(i, j, k) = 3, #A(i′, j′, k′) = 3, and #(A(i, j, k) ∪A(i′, j′, k′)) = 4.

Case 1. First note that when A(i, j, k) contains 4 distinct points, say u, v, s and t

Var(ξi,j,k) = Var(ψ(Xu, Xv) ψ(Xs, Xt)) = Var(ψ(Xu, Xv))2 = (σ2 − 2ρ2)2.

But it turns out that in this case, there are exactly 3 other choices (i′, j′, k′) such that A(i, j, k) = A(i′, j′, k′)
described in the rows C2, C3 and C4 in the following table:

C1 i j k
C2 i′ = i j′ = i + k k′ = j – i
C3 i′ = j + k + h j′ = j k′ = n – i – j – h
C4 i′ = j + k + h j′ = i + k k′ = n – i – j – k – h

This defines an equivalence between indices (i, j, k), each class containing exactly 4 indices; there are then
n3

4
classes.

It is easy to see that ξC1 = ξC4 and ξC2 = ξC3. The contribution of the four variables ξ associated to a given
A = {u, v, s, t} to C̃n(h) is 2(ξC1 + ξC2) . Therefore, its contribution to V is

8 Var(ξi) + 8 Cov(ξC1, ξC2) = 8(σ2 − 2ρ2)2 + 8c,

where

c = Cov(ψ(Xu, Xs) ψ(Xu, Xt), ψ(Xv, Xs) ψ(Xv, Xt)),

or equivalently

c = E(ψ(Xu, Xs) ψ(Xu, Xt) ψ(Xv, Xs) ψ(Xv, Xt)).

As there are
n3

4
classes, the contribution to V of the terms described in Case 1 is V1 = 2(σ2 − 2ρ2)2 + 2c.

Case 2. We have now to consider the situation described in point 2 of Lemma 4. A systematic study of the
possible cases shows that there are only 4 kinds of pairs A(i, j, k), A(i′, j′, k′) giving terms of order n3:

i = j i′ = j′ i+ k = i′ + k′ ⇒ j + k + h = j′ + k′ + h
i = i′ j = j′ i+ k = j + k + h ⇒ i′ + k′ = j′ + k′ + h
i = j j′ = i+ k i′ = j + k + h ⇒ i′ + k′ = j′ + k′ + h
i′ = j′ j = i′ + k′ i = j′ + k′ + h ⇒ i+ k = j + k + h

Up to order n2, there are n3 possible choices of (i, j, k), (i′, j′, k′) associated to each kind of pair of sets A.
Hence, the contribution on the terms described in Case 2 to V is V2 = 4c.

Hence V = V1 + V2 = 2(σ2 − 2ρ2)2 + 6c, and we can conclude:

Theorem 3.8. Cn(h) converges in distribution to a Gaussian N (0; 2(σ2 − 2ρ2)2 + 6c), where

c = E(ψ(Xu, Xs) ψ(Xu, Xt) ψ(Xv, Xs) ψ(Xv, Xt)).

Remark. In practice, c has to be estimated. Theoretically, it can be expressed using 4th-order moments of
ϕ(X,X ′) and α(X), but it is shorter to estimate the expectations of the probabilities of each of the 20 a.a., then
by “plug-in” get an estimation of α(x) and then of c. This gives a consistent estimate V̂ of V and V̂ −1/2 Cn(h)
converges to a Gaussian variable N (0; 1).
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MKVLWAALLV TFLAGCQAKV EQAVETEPEP ELRQQTEWQS GQRWELALGR
FWDYLRWVQT LSEQVQEELL SSQVTQELRA LMDETMKELK AYKSELEEQL
TPVAEETRAR LSKELQAAQA RLGADMEDVC GRLVQYRGEV QAMLGQSTEE
LRVRLASHLR KLRKRLLRDA DDLQKRLAVY QAGAREGAER GLSAIRERLG
PLVEQGRVRA ATVGSLAGQP LQERAQAWGE RLRARMEEMG SRTRDRLDEV
KEQVAEVRAK LEEQAQQIRL QAEAFQARLK SWFEPLVEDM QRQWAGLVEK
VQAAVGTSAA PVPSDNH

Figure 3. The sequence of Human Apolipoprotein E (P02649).

Figure 4. Apolipoprotein E (n = 317). a) The autocovariance function Yn(k). Horizontal
lines indicate +2.33σ and −2.33σ, where σ is the standard deviation of Yn(k). A significant
periodicity is 11. Note also a lower significant periodicity p = 11/3 which probably corresponds
to the presence of α-helices (11/3 is the number of amino acids in each turn). b) The cumulant
statistics Zn(k) for k = 1, · · · , 30. The scale is 2.5 greater than for Yn(k). The horizontal line
indicates +2.33σ, where σ is the standard deviation of Zn(k). Significativity of k = 11 and
k = 22 is much higher than in Figure 4a. c) The quadratic statistic Cn(k). The upper line
indicates +2.33σ, where σ is the standard deviation of Cn(k). Very significative peaks appear
for all periods p = 11q. Again the periodicity 11/3 appears.

4. Application

We now show on an example, how the method can be applied to a protein. We chose the Apolipoprotein E,
which is a membrane protein. In all the examples, we use the PAM250 matrix as ϕ(X,X ′).

Apolipoprotein E (SwissProt Access Number: P02649) is an Human protein which mediates binding inter-
nalisation and catabolism of lipoprotein particles, especially in the hepatic tissues. It has been shown to contain
a period of length 11 [18, 21] and the copies of the repeated unit are rather well conserved. Figure 3 gives the
complete sequence of this protein.

Applying our method to this case results in a significative peak of the autocovariance function Yn(k) at the
period 11 (Fig. 4a); the peak is much more significant (approximately 12 standard deviation above the mean)
when considering the cumulated statistic Zn(k) (Fig. 4b); it also appears for the quadratic statistic Cn(k)
(Fig. 4c). Hence all these statistics prove a very significant periodicity with k = 11.

We applied similar treatment to a number of other proteins known for presenting pseudo-periodicity, as
for example the myosin of the rod of C. elegans (SwissProt P 12844), rat α-farnesyl transferase (Q02769),
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Figure 5. Plots of Yn(k) and Zn(k) for the protein AAHA of methylophylus. No period
appears as significative.

Salmonella typhimurium flagellin (P03001) or Xenopus laevis transcription factor III (P03001). In all cases, our
statistics clearly detect periodicities (for example p = 7 for the myosin or the farnesyl transferase, p = 6 for
flagellin and p = 30 for transcription factor).

Finally, we tested our method on a protein without any periodicity. We chose a globular protein, AAHA
which is the A-chain of methanol dehydrogenase from the bacteria methylophylus (PDB reference: 4aah). The
graphs of Yn(k) and Zn(k) do not show any significant period.

5. Conclusion

We applied simple statistics mimicking those used in time series analysis to catch periodicity in sequences of
letters. When the simple alignment statistic Yn(k) has the behavior of a periodic time series, the set of examples
of proteins shows that the statistic Zn(k) cumulating the Yn(h) for h chosen as multiples of k clearly isolates the
main period. On a set of other examples not shown here, it appeared that the quadratic statistic Cn(h) defined
like an autocorrelation of the centered sequence Yn(k) does not select the main period but shows a much more
periodic behavior with was not at all the expected one. On the set of the tested proteins, the behaviour of this
statistic was very disappointing.

Therefore, the cumulative statistic is therefore a suitable tool to find periodicities in sequences of letters, and
in particular in protein sequences. Test based on this statistic seem to be more powerful than the one based on
the simple alignment statistic.
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