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AN ALMOST SURE LIMIT THEOREM FOR MOVING
AVERAGES OF RANDOM VARIABLES BETWEEN THE
STRONG LAW OF LARGE NUMBERS AND THE
ERDOS-RENYI LAW

HARTMUT LANZINGER

ABSTRACT. We prove a strong law of large numbers for moving aver-

ages of the form (logn)~? ZZ:L(rlg "*1 X} when the moment condition
E (exp{t|X1|1/p}) is imposed (with some p > 1). It will turn out that

due to the extreme terms among the X these means do not satisfy a
strong law in the classical sense but we can identify its upper and lower
limit.

1. INTRODUCTION

In this paper we intend to close a gap appearing in the theory of strong limit
theorems for moving averages of random variables. To start with we recall
the classical strong law of large numbers due to Kolmogoroff (1930, 1933):
THEOREM K Let X, (Xj)p, be independent, identically distributed random

variables.
n

Then the sequence - ZXk converges almost surely as n — oo if and only
k=1

if E|X| < co.

In this case the a.s. limit equals p = EX.

One of the many ways to generalize this result involves so called moving
averages of random variables. In this context moving averages are means of
the form b1 2222’;1 X}, with a monotonically increasing sequence ()52,
b, € N for all n € N such that b, — oo (n — o0). For moving av-
erages there are well-known analytical results that relate strong laws for
these means to strong laws for certain classes of weighted means (partic-
ularly summability methods). See e.g. Chow (1973) for such results con-
cerning Euler methods, Bingham and Tenenbaum (1986) and Bingham and
Goldie (1988) for corresponding theorems on Riesz means. Following this ap-
proach one can prove strong laws for certain summability methods if strong
laws for suitable moving averages are given. The reader may consult Lai
(1974), Chow (1973), Bingham and Tenenbaum (1986), Bingham and Mae-
jima (1985) as well as Bingham and Stadtmiiller (1990) for a large variety
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of results of that kind. Strong laws for very general classes of summabil-
ity methods were obtained by Kiesel (1993). Of course this list does not
aim at completeness. For a more complete account the reader is referred to

Bingham (1985, 1988). The behavior of the sequence (b;l 221—211 Xk)oo
n=1

(o]
differs from (b;l ZZ"_I Xk) as far as the covariance structures of the se-
- n=1

quences are concerned. This covariance structure is crucial for almost sure
convergence whereas from the point of view of convergence in probability
there is no difference at all between both sequences. What can be said in
general is that one has to impose the higher moment conditions the more
slowly (b,,)22, grows in order to obtain a strong law of large numbers. This
can e.g. be seen from the following strong law for moving averages which is
implicit in Chow (1973) and then is stated again in a more general framework
by Bingham and Tenenbaum (1986):
THEOREM C-BT Let (Xj);—, be a sequence of independent, identically dis-
tributed random variables and p > 1.
Then
n+[nt/P]

Z Xy —p fs.
k=n+1
if and only if

E|X|? < 00 and EX = p.

Similar results hold in situations with more general moment conditions such
as E¢(]X]) < oo with functions 1 more general than powers but with poly-
nomial growth. For a theorem of this kind cf. Bingham and Goldie (1988).
This particular theorem applies to functions like 1 (z) = 2P for some p > 1
but not to ¥ (x) = €'* for a ¢ > 0. It is not very surprising that some condi-
tion on the growth of ¢ is needed in order for this result to hold since Shepp
(1964) proved the following:

THEOREM S Let X, (X})p—, be independent, identically distributed random
variables with EX = 0 and M(t) = Ee'X < oo for all t in a neighborhood
of 0.

Define m(z) = sup{azt —log M (t)} for 2 > 0. If m(y) = 1/c holds for ¢ and

teER

~ then it follows:

n+[clogn]

Z Xp=~v as.

k=n+1

lim sup
N 0 clog n

If ¢ varies in a suitable non—degenerate interval then the distribution of X
is uniquely determined by the limit.

Erdés and A. Rényi (1970) later proved a similar result, obviously unaware
of Shepp’s work.

Note that if the moment generating function of X exists in an open neigh-
borhood of 0 then there is a ¢y € R such that for every ¢ > ¢g we may find
some v € R with m(y) = 1/c. Hence this condition is fulfilled at least for
all ¢ € (cg,00). We may in particular let ¢ vary in an interval of positive
length.
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We will denote such results as Erdés—Rényi—Shepp laws or Erdés—Rényi laws
in the following. In contrast to the classical strong laws of large numbers we
do not have invariance of the limit in this case. These topics also attracted
a number of authors. We want to mention only Csorgd and J. Steinebach
(1981), Steinebach (1978), Kiesel and Stadtmiiller (1996), Deheuvels and
Devroye (1987).

Comparing the above theorems one discovers that none of them applies to

moving averages like (logn)~ ZZ-I_nlj_gl "l X, under the moment condition

E(exp{|X|'/?} < co. The function v (z) = exp{z'/?} is not of polynomial
growth so the result of Bingham and Goldie does not apply. But on the
other hand we do not have any information about the moment generating
function Ee!* that may not exist for any ¢ # 0 in spite of the moment
condition. So Theorem S does not apply either. Thus we can ask the ques-
tion whether anything Can be said about the behavior of moving averages

like (logn)~ ZZ-I_nlj_gl "l X, under the above moment condition, if a classical
strong law or an Erdés—Rényi type law holds or if a third possibility applies.
The answer to this question (in a more general form) is the main objective
of this work. There are only few papers dealing with such averages. We only
want to mention de Acosta and Kuelbs (1983) who partially examined such
means in a very general setting (i.e. for random variables taking values in a

separable Banach space).

2. MAIN RESULTS

From now on we assume without further comment that X, (Xj);Z, are in-
dependent, identically distributed random variables. We further set gp(2) =
sgnz - |z|Y? for p > 1 and 2 € R.

THEOREM 2.1. For some p > 1 we define g(z) = g,(z) and a, = (logn)?P.
Further let ty,t3 € (0,00].

Then the following are equivalent:

(i) Be"X) < 0o fort € (—ty,t,), Be™) = oo fort & [~11,t5) and EX =
W
n+an 1
(ii) I%rggfa Z Xp=p— g a.s. and
k=n+1
n+an
li — =
ma - 3L Xe=pt g
k=n+1

REMARK 2.2. Note that there might be different triples (u, t1,t2) such that
the respective values of p+ ¢, and p — ;" agree. Thus the statement of
part (ii)=-(i) of the assertion is to be read as follows:

If liminf, . a;* ZZIZL X and limsup,,_, ., a,;* ZZ-I_ZL Xy both are fi-
nite almost surely then Ee®(X) < oo in a neighborhood of 0. Hence E|X| <
0.

Setting EX = u we can now write liminf, ., a;! ZZIZL
limsup,,_,.. a;! ZZ-I—ZL Xj in the form g — 7" and p 4 t;”, respectively,
then the moment condition (i) holds.

Similar remarks also apply to all other results of this kind stated here.

X} as well as
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REMARK 2.3. Observe that the upper limit occuring in part (ii) of the as-
sertion equals lim sup,,_, ., X, /a, which follows easily from the usual Borel-
Cantelli argument. That means that the moving averages contain terms of
the size of the norming constants again and again and that the moving av-
erages become at most as large as these terms. This suggests that precisely
these terms determine the non-classical behavior of these means which will
be shown later. In the classical case such terms cannot occur because the
moment conditions imposed on X or K X for arbitrary K > 0 are equivalent.

REMARK 2.4. The special case t; = t3 = oo of Theorem 2.1 yields a strong
law in the classical sense.

A similar proof also yields
THEOREM 2.5. For some p > 1 we define a,, = (logn)P.
Then the following are equivalent:

(i) Ee'X 1 < for some t >0, EX = p.

(ii)

1 n+tcn
lim — Z Xp=p
n—00 Cp
k=n+1
for every monotonically increasing sequence (¢,)°2, with ¢, > 1 and
Cp,

— > 00 (n— o0).

an
In Theorem 2.1 the upper and lower limits might differ from EX. So we
are in a situation that at least resembles the one of the law of the iterated
logarithm. Like there one can also ask for the set of limit points of the
sequence of moving averages in our setting. This question is answered by
the next result. We denote here and later on the set of limit points of a
given real sequence (z,)52; by C({z,}).
THEOREM 2.6. For some p > 1 we define g(z) = g,(z) and a, = (logn)?P.
Further let ty,t3 € (0,00].
Then the following are equivalent:

(i) Ec"Y) < o fort € (—t1,t2), EeX) = oo fort ¢ [—t1,t2) and EX =

He .
. 1 1 1
(i) C ({a Z Xk}) = [,u— g,,u—l— g] a.s.
k=n+1

We now reconsider an aspect observed above. We have seen that the non-
vanishing upper limit in Theorem 2.1 was a consequence of the largest terms
occuring. This leads to the idea that it should be possible to prove a strong
law in the sense of almost sure convergence to the mean under the moment
conditions imposed above for moving averages slightly modified by excluding
some terms with large modulus. This is done in Theorem 2.7.

Results of this kind were already shown by Mori (1976, 1977) for the classi-
cal strong law of large numbers and by Griffin (1988, 1988a) for the law of
the iterated logarithm with some ideas being due to Feller (1968). In these
classical theorems the moment conditions E|X| < oo or EX? < oo, respec-
tively, can be weakened by removing extremal terms. The methods we use
in the sequel partially rely on techniques developed by Mori and Griffin.
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THEOREM 2.7. For some p > 1 we define g(z) = g,(z) and a, = (logn)?.
Further let ty,t3 > 0 be given.

We assume Eet9X) < oo for all t € [—ty,ty] and EX = p.

Finally let (r,)S2, be a monotonically increasing sequence of positive inte-
gers such that r,, — oo (n — 00). Assume that there exists an o > 1 and
at >0 with

. . an
1177‘Hi>101<1)f W > 0 (21)
ntan ntan
Let Z X}, denote the sum Z X with the r, largest and the r,, smallest
k=n+1 k=n+1
terms excluded.
Then
e
— Z Xi — p as. (n— 00).
ank:n+1

REMARK 2.8. Condition (2.1) is satisfied e.g. by r, = (logn)” with v €
(0,p).

Theorem 2.9 shows that the condition r, — 0o (n — oo) of Theorem 2.7 is
necessary. So there is no r € N such that the moving averages without the r
largest and the r smallest terms converge to the mean almost surely unless
Ec!lXI"7senX o for all t € R in which case we have almost sure conver-
gence to EX for the original moving averages already without removing any

terms.

THEOREM 2.9. For some p > 1 we define g(z) = g,(z) and a, = (logn)?.
Further let r € N as well as tg,t1,t3 > 0 be given.

We assume Ee'9) < oo for t € [—ty,to] and Ee'29X) = oo,

ntan ntan
Finally let Z X denote the sum Z Xy with the r — 1 largest sum-
k=n+1 k=n+1
mands removed. Then
n+an
I 1 i X, > 1
imsup — 2 —.
n—oo Qp R— T‘ptg

REMARK 2.10. The proof of Theorem 2.9 shows that the r-1 smallest sum-
mands can be removed, too.

3. AUXILIARY RESULTS

First we want to introduce some notation.

° Z means Z

k=x r1<k<wz2,k€EZ
Sy = S[y] is defined the same way for an arbitrary real sequence (5n)2% ¢
and an arbitrary z > 0.

e The variable C' is supposed to represent a positive constant that may
change within one sqeuence of inequalities.

e For p > 1 we denote by ¢ the number ¢ > 1 with p=! + ¢~ = 1.
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e We use the notations Lz = max{l,logz}, LLz = L(Lz) and recur-
sively define Loz = 2 and, for v € N: L,a = L(L,_12) (for 2 > 0,
respectively). We further write for & > 0: L%z = (Lz)°.

First we state a result that can be found in Lai (1974a).

LeMmMA 3.1. Let (Yy)p, and (Zy)12, be two sequences of random variables
on a probability space (U, F, P) such that (Y1,Ys,...,Ys) and Z,, are inde-
pendent for all n € N. Further let a,b € R and Z, 2y basn — 0.

Then the following holds:

a) If limsup(Y, + 7,) <a+b thenlimsupY, <a a.s.
n—00

n—00
b) If lirri}inf(Yn + 7Z,) > a+b then lirri}inf Y,>a a.s.

We will also frequently use the well-known inequalities

2 2
Lot el <em <t e, (3.1)
$2
e <l4z+ 7H(x) (3.2)

where H(z) = max{l, e”} or simply
I+z<e” (3.3)
for x € R.

Next we state some easy technical lemmas.

LEMMA 3.2. Let the functions hy: (0,00) — (0,00) (k= 1,2) be monoton-

h
2 (z —
( 2

ically increasing. Let hy(z) — 0o (x — 00) as well as
hi(2))

Then we have for every y € R:

(1 + %@))hm ~ exp {th(x)} (z — o0).

Proof. 1t suffices to prove

ha () "
log (1—|—%($)) —ijExs —0 (z— o0).

But this follows easily by Taylor expansion of the logarithm. O

The next lemma essentially contains, as a corollary, the Poisson approxima-
tion for sums of Bernoulli distributed random variables.

LEMMA 3.3. Let (p,)S2, and (r,)22, be two sequences of numbers such that
pn € [0,1] and np, — 0 (n — 00) as well as r, € N and r2/n — 0 (n = o).
Then

n

y; ( Z )PZ(l—pn)n—y N % (n = o0).
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Proof. We know

n

Z ( Z )PZ(l — )" > (nry )P (L= pa) T

v=rp
r

n'n N
1= D) (= )

v

From Lemma 3.2 we obtain
2

(1— r—”)r" Nexp{—r—n} 51 (n— oo)

n n
as well as
(1—p,)" ~e™ 51 (n— o00).

Furthermore

n

ﬁ > ( ; ) Pr(1=pn)"™"

v=rp v=rp

"Ll (n—r,)! - e
> Lt (1)

(n—v)lw!

IN

n

n—"Tg ! v—r n—v

(n—v)!l(v—rp)!

IN

v=rp

— n—ry v n—rn—>Vv
=) ( , )pn(l—pn) =1L

v=0

O

REMARK 3.4. The special case r, = r = const can e.g. be found in Mori
(1976).

LEMMA 3.5. Let Y be a random variable defined on a probability space
(Q,F, P). Further let a € R and ty,t; > 0. Let g(z) = g,(x) for z € R.
Then

Ec“0) < oo for all t € (—t1,13)
if and only if
Ec'9~%) < oo for all t € (—ty,t3).

Proof. Tt suffices to prove one direction. So assume Ee®?(Y) < oo for all
t € (—t1,t2).
Fix t € (0,t2). If @ > 0 then ¢(Y —a) < ¢g(Y) and the assertion follows
immediately.

If @ < 0 the assertion follows from Y —a < —afor Y <0 and for Y > 0
Y —a=Y+a < (Yl/p + |a|1/p)p ,

ie. g(Y —a) <g(Y)+g(|al).
The assertion for negative values of ¢ follows similarly. O

Because we not only want to deduce a limit theorem from a moment condi-
tion but also vice versa we need a result that allows us to do this step. In
that respect the following proposition is extremely useful. We use a notation
matching the situation in later sections.
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ProPOSITION 3.6. Let g: R — R be a strictly increasing function such that
g(z) > 00 (2 —00) and g(z) - —c0 (2 — —00).
For a,, = g~ '(logn) let

a—n§K<oof0ralln€N.
n

Let
n+an
lim sup — Z X < sg
a
n— 0o nk:n+1
as well as
n+an
lim inf — Z X, > —s
n—00
k=n+1

with suitable constants sg > 0 and s; > 0.
Then E|X| < oco. If EX = 0 then we have also

Ee? (%) < 00

for all s > sq and all s < —s4.

n+an—1
1 XTL a
Proof. SetY, = — E X and Z, = 22t Note that Z,, —— 0 (n —
T a/n
k=n+1

00). Then Lemma 3.1 immediately implies

liminf Y, > —s;.

n—0oo

Hence we obtain

Xn-l—a 1 n+an
lim sup = = limsup | — Z Xy —Y, | <sp+s1 < 0.

n—00 (125 n—00 ank:n+1

Therefore

X, .
limsup — < K (sg+ s1).
n—oo N1

Thus for every > K (so + s1) we have

X, )
P (— > 1.0.) =0.
n

Because of independence of the events {X,, > nz} we obtain from the Borel-

Cantelli lemma using the notation ¥ = —:
x

oo > f:P(Xn>nx):§:P(Y>n)

n=1
ook 00

= ) P(Ye(k,k+1])22/ (Y —1)dP
k=1 n=1 i1 Y €k k1]

> / (Y —1)dP=EYt - P(Y > 0).
{Y>0}

Thus we have proved EY T < oo and therefore EXT < co. EX™ < oo can
be shown similarly. From now on we assume that EX = 0.
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X 1 &
Now we set Y, = "+ and Z, = — Z X}. Since EX exists we obtain
an an
k=n+2

for arbirarily small € > 0:

P(Zn>e):P(anz_:Xk>ean) —0 (n— o0)

k=1

by the weak law of large numbers. Hence Lemma 3.1 gives

limsupY, < sp.

n—0oo
So for every s > sq:
P(X, > sayi.0o.) =0.
By the Borel-Cantelli lemma

oo > f:P(Xn>san):§:P(eg(%)>n)
= Y P () e )

(eg(x) _ 1) AP > Eed(¥) _ 1.

]2

So we have proved Ee?(%) < oo for all s > sg.

The second assertion Eed(%) < oo for all s < —s; follows applying the same
argument to (—Xy)72,. O

4. PROOFS OF THEOREMS 2.1 AND 2.6

First we prove the following result which contains one part of the main
theorem.
PROPOSITION 4.1. For some p > 1 we define g(z) = g,(z) and a, = (Ln)?.

Further let t1,ty > 0 be given such that Ee~9X) < oo and Ee29™) <« .
In particular, this implies E|X| < oo and we may assume EX = 0.
Then

1 n+an n+an
——<hm1nf— E Xk<hmsup— E Xk §— (4.1)
tzlj N0 by n—oco p 212)
k=n+1 k=n+1

Proof. 1t suffices to prove the inequality for the upper limit. Fix sp € (0, 2).
We decompose X}, into X; = X, and X} = X} — X]. Then

SO P(XL £ 0)

k=1

1{Xk<s2_pak}
ZP( 20(X) > k)
— ZZP (es2g(X) €(n,n+ 1]) < Ee29(X) < oo,

k=1n=k
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Thus P(X[ # 0 i.0.) = 0 and therefore

n+an
1
nlgﬂoa > Xx{=o. (4.2)
k=n+1

Since 1 < @pqq,/0, — 1 a8 n — oo it suffices to consider only n large
enough that for some $3 € (s3,12):

Ay 1/q
S9 (M) < 59 < tg.
an

Now observe that EX}, < 0forall k € N, EX? < 0o and E(X?e%9(Y)) < .
Then (3.2) yields for k=n+1,...,n+a, and t = szanl/q

2
Ee¥t < 1+t—E((X')2H(tX,g))

< 14= (EX2+E<< N2 1 ixgs0))
< 1+5(EX2+E(X2exp{t82_ 'a/"9(X))))

2p 2 2,.529(X) ~2/q
< 14 2/ EX*+E(X"e )) < expqO(a,;)

where we have used (3.3) in the final step. Hence we obtain for any = > 0:

ntan n+an
I
P ( Z X > wan) < e twan H Eet X%

k=n+1 k=n+1
< exp{ zshlogn 4 O(ak~ 2/q)}
< exp{—ashlogn+ o(logn)}

which yields a convergent series if @ > s;”. Since sg € (0,{3) was arbitrary
this proves

1 = 1
lim sUp — Z X, < . (4.3)
n—0oo t2
o= n+1
Now the assertion follows from (4.2) and (4.3). O

The same proof yields the following variant of Proposition 4.1:
PROPOSITION 4.2. For some p > 1 we define g(z) = g,(z) and a, = (Ln)?P.
Let v > 1.

Let ti,t; > 0 be given such that Ee "9 < 0o and Ee9¥) < 0. In
particular, this implies E|X| < oo and we may assume EX = 0.

Then

[n7]+anw [77‘7 +any
—— < liminf

1
X <limsu X, < — 4.4
’ytp T n—=00  Qyy [z:]—l_l k n—>oop anw Z k 7 2 ( )
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Proof. (Theorem 2.1) We first assume that (i) holds. Then the expected
value p=EX exists. Now B¢ %) < oo for t € (—ty,t,) and Ee?X W =xo
for t € [—t1,t2] by Lemma 3.5. Therefore we may without loss of generality
assume that g = 0 since otherwise X may be replaced by Xy — p.
Proposition 4.1 immediately yields

n+an
. 1
limsup — g X < 7 a.s.
a
n— 0o n k=n+1 2

Similarly we can prove the corresponding statement for the lower limit. On
the other hand we know from Kolmogorov’s 0—1 law that the upper and
lower limit are constant almost surely. If now

n+an
) 1
limsup — g X < m a.s.
a
n— 0o n k=n+1

with some ¢ > ¢, then we obtain from Proposition 3.6 that Eed6¥) =
Ees/"9X) < o0 for all s € (0,7), thus particularly for an s with s/ > t,
contradicting the assumptions. So we have proved

n+an

1
limsup — E Xy = 5 as.
n—oco Op e tz
=n+1
and the proof of
1" 1
liminf — Xy = —— as.
minl - D Xe= g as
k=n+1

is similar.

Now we assume (i). By Proposition 3.6 E¢'X) < oo for all ¢ in a neigh-
borhood of 0. So E|X| < oo and we denote EX = pu. If we replace X} by
Xk — p again, if necessary, we may assume without loss of generality that
w=0.

Then Proposition 3.6 implies Ee'™) < oo for all ¢ € (—t1,t2). If Ectv(X)
< oo for a t >ty then as in the first part of the proof

n+an
limsup — E X, < — as
a
n— 0o n k=n+1

would follow from Proposition 4.1 and this would contradict the assump-
tions. The assumption EeX) < o for some t < —t; similarly leads to a
contradiction. O

REMARK 4.3. In the special case where an asymptotic for the tail of the
distribution function of X is known Theorem 2.1 can also be proved using
a large deviations result implicit in Nagaev (1979) (this can also be found
with a short proof in Gantert (1996)).

Proof. (Theorem 2.6) That (i) follows from (ii) is obvious from Theorem
2.1.
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So we assume (i). Using Proposition 4.2 we can show exactly as in the proof
of Theorem 2.1 that the moment condition (i) is equivalent to

[n"]4any
1 — -
Igggéfam Z Xe=p a.s.
v]+1
and
[ ]+an7 1
li — X — a.s.

k=[n 7141

Since v > 1 is arbitrary we find for every s € {,u Y tz_p} a subse-

quence with an almost sure upper or lower limit that equals s. The re-
mainder follows from a standard argument: If we choose a countable dense

subset S of {,u - tl_p,,u—l—tz_p} it follows by excluding the exeptional sets

corresponding to elements of .S:

(5o

Since the set of limit points must be closed we obtain

fasi ! 1]
Z X 2 (=7, p+ | as.

L G £ )
o= n+1

The reverse inclusion

fasi ! 1]
Z X Clp— 7,0+ 5| as.

L G £ )
o= n+1

is an obvious consequence of Theorem 2.1. This completes the proof. O

5. PROOFS OF THEOREMS 2.7 AND 2.9

PROPOSITION 5.1. For some p > 1 we define g(z) = g,(z) and a,, = LPn.
Further let ty,t3 > 0 be given.

We assume Ee'9Y) < oo for all t € [—t1,t;] and EX = 0.

Finally let (u,)52, and (1,)22, be monotonically decreasing sequences of re-
als with 0 < 1, u, <1, apu, — 00, ayl, > 00 (n— o0) andu= lim u,

n—00
and | = lim [,. Set
n—00

n+an
- v -
k=n+1 { a"<Xk<una"}
Then
[1/4 1 ul/e
——— < liminf —U <limsup —U, < ——.
tl n—=00 (I, n—oo Qp (2

Proof. Set Yk(n) = Xy 1{_1 7P an<Xg<unty Pan} and p, = EYk(n). Observe
nty nS SUnty n
that g, — 0 as n — oco. Choose § > 0 and sy € (0,¢2) arbitrarily but
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fixed. We now follow the lines of the proof of Proposition 4.1. Choosing
t=sh(u, + 5)_1/‘1(1;1/(1 we obtain

) () (n)
Ee''s < 1—|—t,un—|——E(Yk H(tY,™))

< exp{olar") + 0/ | = exp {olar /)

Thus for z > 0:

n+an P

P(U, > za,) < e ™0 H B < exp{—ﬁlogn—l—o(logn)}
k=n+1 n

which yields a convergent series if z > (u + §)'/9s,"

Hence limsup,,_, ., U,/a, < (u+ 5)1/q82_p a.s. and, since 6 > 0 and sy €
(0, t2) where arbitrary,

1 ul/d
limsup —U, < —— a.s.
n—oo Op t2

Thus the upper inequality of the assertion follows and the lower inequality
is proved similarly. O

Before we can prove the relevant theorems we need some information about
how often very large terms may occur.

PROPOSITION 5.2. For some p > 1 we define g(z) = g,(z) and a, = (Ln)?.
Further let ty,t3 > 0 be given.

We assume Eet9X) < oo for all t € [—ty,ts].

Finally let (r,)52, and (k,)S2, be monotonically increasing sequences of
positive numbers satisfying k, — oo and k,r ¥ — 0 for n — oo and also

li f 0
i nf Virke
for some 7 > 0.
Then
1 n+an 1 n+an
lim — 1 ] = lim — 1 an
1 n+an
= lim — 1 an 0 as
n—00 1, k:nz; {1xn> 52}
Proof. Set
n+an
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We may assume without loss of generality that k,r ¥ <1 for all n € N.
Choose an arbitrary but fixed > 0. Then we have for any ¢ > 0:

P(Jn > $T‘n) - p (etJn—txrn > 1) < e—txrnEetJn

t t an [an]
— et p(x sy 4p
‘ (e ( >kn)+ ( k))

e—torn (1—|—e P( t29(X) 5 ot29(an/kn) ))

Eet29(X) [an]
S e—tacrn 1 + eti .

IN

etaLn/k!?

In the sequel we use the notation M (t3) = Ee'??X). Choose ty € (0,1;) and
set t =toLnk, /p, By (3.3) we obtain for all n such that tozr, k; p > 9.

[an]
exp < —tgrln—r 1/ 1+ M(tz) T,
kn expq{(tz — to)Ln/ky '

exp {—QLn + M (t3) ] o, } .
exp{(ty — to)Ln/k,"}

Since there exists a 7 > 0 by assumption such that

Ln
kl/p

P(J, > ary)

IN

IN

>¢Ln

for some & > 0 and sufficiently large n it follows that
[an]
exp{(ta — to)Ln/ky/"}
Hence there exists a K > 0 with

—0 (n— o0).

P(J, > ar,) < Kn™?

This yields a convergent series and therefore

1
limsup —J, < z.

n—oo I'n

Since J, > 0 for all » and z > 0 was arbitrary this completes the proof.
The other assertions can be proved similarly. O

Proof. (Theorem 2.7) Note that condition (2.1) implies o < p. Set k,, = ry.

Then obviously lim inf -

> 0 for some 7 > 0 and also
n—00 n( n)T

k _ k _
—n:r§1—>oo (n—>oo)and—n:rf§p—>0 (n — o00).
rn rn
Now define
ntan n+an

= ) X1 {|X con) and J, = Z {Ixy>22)

k=n+1
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Then lim,— s J,/r, = 0 according to Proposition 5.2. Hence for almost all
w €  there exists an N(w) such that for all n > N(w):

1
0< Jﬁ <= Y

i.e. for n > N at most r,/2 summands of a modulus larger larger than

an/k, occur. This means we have eliminated all summands of modulus
niﬁﬁ

larger than a, /k, from the sum >  Xj in case n > N. Therefore U, and
k=n+1

niﬁﬁ

> X differ by at most r,, summands of modulus < a,/k,. For fixed w
k=n+1
and n > N(w) this yields

n+an
1 — rn G rn
— U, — X< = === ,
anU > HE o kn—>0 (n — o0)
k=n+1
hence
1 ntan
— | U, - Xi | — 0 a.s. — .
o k_z;_l k a.s. (n— o0)

1
Since Proposition 5.1 implies —U,, — p (n — o) the assertion follows.
a

" O

Thus we have found out that a strong law holds if we exclude a sequence
of extremal terms from the sums which is increasing to infinity but not
growing too fast. In the sequel we prove that this result is best possible in
the sense that it is not sufficient to exclude only finitely many terms. Since
we have only shown an inequality for the upper and lower limits of truncated
random variables in Proposition 5.1 we cannot compare the sequence with
the finitely many extremal terms to the sequence of truncated variables but
have to proceed in a different way.

LEMMA 5.3. For some p > 1 we define g(z) = g,(x) and a, = (Ln)P. Fur-
ther let to, t1,t2 > 0 be given.
We assume Ee'9Y) < oo for all t € [—t1,to] and Ee'29X) = oo,

Further let e > 0 and r € N with e < —. Finally let (1,,);2, be a monoton-

rty

teally decreasing sequence with 0 <[, < 1, lim [, =1 with Lnl, > L™n for
n— 0o

all sufficiently large n with some fized T > 0.

Then for the sequence of sets

B, = {Xi > €a, for at least r indicesk =n+1,... ,n+ [a,],
P
—tnlp
X > 7 forallk=n+1,...,n4 [a,]},

it follows that
P(B, i.0.)=1.
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Proof. Set
A, = {Xy > fa, for at least r indices k=n+1,... ,n+ [a,]}

and
P

C, = {sz _lntf;n forallk:n—l—l,...,n—l—[an]}.
1

Further set k,, = [L(ay)]. Then
P(B,) = P(A,NC,)

= ZP(XZ' > €ea,, for exactly v indices i =n+1,...,n+ [a,];

X; > —lPa,/t) foralli=n+1,...,n4 [a,))

kn
Z ( [an] ) P(Xy > €ay,, ..., X, > a,,

14

v

v=r
Xy € (—lay/t], a,), ...,
X, € (—ay /1], € ay,])

\ ( [an] ) P(X > Pa,)"

P(X < 6pan)[fln]—l’

(]

P (X € (=lhan /8, ea,))™"
P(X < etay,)lonl=lkn]

Now Lemma 3.2 implies

_12 n [an]
P (X € (—tpa ,epan])
1

~ exp {[an] (P (X < —li;f”) +P(X > épan))} ~1

1

as n — 0o and
P(X < a)lenl=lnl © exp{([a,] = [k]) P(X > a,)} ~ 1 (n— o).

Therefore we have for sufficiently large n:

k
1 & [an] P v P [an]—v
P(B,) > 52( ; )P(X>e a,)’ - P(X < €ay,)

1 1

for at least k, indices k= 1,...,[a,]).

Choose v > 1 small enough that v*e < 1/(rty). We want to show that
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Since % — 0 (n— o0) Lemma 3.3 yields:
P(X; > €’a,, for at least k,, indices k = 1,...,[a,])
WX > ) < it (lon )
< exp{—Lnk,toe + o(Lnk,)}.
Therefore

ZP(XZ' > €Pa, for at least &, indices k =1,...,[a,]) < oc.

n=1

Hence it suffices to prove

Lemma 3.3 yields

P(X Pa,
r!
Thus we must show:
ZafﬂP(X > Pay)" = oc.
n=1

To prove this by contradiction, we assume that

ZafﬂP(X > fa,y)" < oc.

n=1

By the substitution u = ¢?y*Plogf y, i.e. y = e“l/p/(wrz), we can conclude

0o > ZazyP(X>epam)r

n=1
CZ/ logP" (n)P(X > ¢”logP(n"))"dy

>
> C Z / log™ (y) P(X > (ve)"log" y)"dy
:cj’upX>W7> W)

> CZ/ P P(X S ufyP) e TR gy
> CZ/ WP s yren 70 gy

> Cf:P(X > n)ren M)

n=1
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Hence
P(X > n) e %) < Lie P(X > n) < e /7/0rer?)
for large n. This implies for sufficiently large n:

—[pP1/P —n
P(g(X)>n)=PX >nf) < exp{%} < eXp{re'P}'

For large z, @ € [n,n + 1], we obtain

P(g(X) > @) < 70 < emeleh),
1
For t € (07 —4) we get
rey

Eetv(Y) = / e P(g(X) > u)du < oc.

— 00

1
Since ¢3 < —— this particularly holds for ¢ = ¢3 and this contradicts the
rey

assumptions.

Hence Z P(B,~) = co. For sufficiently large n we moreover know that [(n+
n=1

1)"] > [#"] 4 [anv] 4 1 which means that B, )y and B,» are independent.
The Borel-Cantelli lemma implies P(B,, i.0.) = 1. O

Proof. (Theorem 2.9) Let [, \ 0 be according to the assumptions of Lemma
5.3, e.g. I, = (logn)~'/2. Then Proposition 5.1 implies
1 n+tan
a Z Xk ]_{_lnan/tzlﬂstSlnan/tg} — 0 a.s. (n — OO)
k=n+1

Choose an € < 1/(rty) and an w € limsup,_,., B, where the sets B,, be
defined as in Lemma 5.3. Then there exists a sequence (n,)02, n, € N,
such that w € B, for all v € N. For such a fixed w we have:

| ot | ko,
lim sup — Z Xp > limsup — Z X
n—oo Un e v—yoo Gp | °
=n-+1 k=n,+1
n+an
> @ llimsup— Y - X L0, /<Xy <lnan /i)
n—oco p
k=n+1
> P,
Since € < 1/(rty) was arbitrary this completes the proof. O

6. CONCLUDING REMARKS

Now we briefly state two results that show that Theorem 2.1 does not depend
on the special form of the moment condition Eetssn XIXI'7 Gince the proofs
for all preliminary results and the theorems themselves are very similar to
the case of Theorem 2.1 we omit them. For the notion of regular variation
used in the sequel we refer the reader to the monograph by Bingham, Goldie

and Teugels (1987).
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THEOREM 6.1. Let p > 1 and g: R — R be a function with the following
properties:

e ¢ is strictly increasing.

e ¢ is reqularly varying of degree ]l).
Again we define a,, = ¢g~1(Ln). Finally let real numbers ty,t € (0,00] be

given.
Then the following are equivalent:

(i) Be"X) < 0o fort € (—ty,t,), Be™) = oo fort & [~11,t5) and EX =
W
n+an
(ii) lzrggfa Z Xk_,u——a.s. and
k=n+1
n+an 1
hmsup— Z X, = ,u—l—t—pas
n— 0o k n+1 2

THEOREM 6.2. Letv € N and Let v € N and g(z) = /L, |z| for all z € R
as well as a, = g~(Ln).

Further let ty,t3 € (0,00].

Then the following are equivalent:

(i) Be"X) < 0o fort € (—ty,t,), Be™) = oo fort & [~11,t5) and EX =
W
n+an 1
(ii) larri)gfa Z Xp=p— . a.s. and
k=n+1
n+an
hmsup— Z Xk_,u—l——as
n—0oo
o= n+1

REMARK 6.3. Condition (ii) can again be sharpened to

n+an
c(fE )bl
t to
"ok n+1

REMARK 6.4. The case t; = t5 = oo again gives a strong law in the classical
sense.

e According to a special case of the well-known Komlés—Major—Tusnady
approximation (see Komlés, Major and Tusnady (1975, 1976) and Ma-
jor (1976)) a sequence of independent identically distributed random
variables satisfying E¢(|X|) < oo can be approximated almost surely
by a Wiener process on a suitable probability space with the almost
sure error being O(¢~!(n)) for a large class of functions ¢ : [0, 00) —
[0, 00).

Now one can raise the question as to whether the O(-) occuring in the
error term can be replaced by o(-). It has been known for a long time
that in the case ¢(x) = 2 with some p > 2 the answer is positive while
it is negative for ¢(z) = €' with some ¢ > 0. The latter essentially is
a consequence of the Erdés-Rényi law. Shao (1989) proved that in the
case ¢(z) = =" with p > 1 O(+) cannot be replaced by o(-) in general
either. Shao’s result also is an immediate consequence of Theorem 2.1
because a strong approximation with error term o(log? n) would imply
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a strong law in the sense of almost sure convergence to the mean in the
situation of Theorem 2.1. But we just have proved that a strong law
of this kind does not hold so a strong approximation which is sufficient
for it cannot hold either.

The question as to whether a strong approximation with error term

o(log” n) holds under the stronger condition Ee!M " < oo forall t > 0
which would still be possible according to the case t; = t3 = oo of
Theorem 2.1 remains open.

e As already mentioned in the introduction one motivation for dealing
with moving averages of random variables is the fact that they often
imply strong laws for other summability methods when some appropri-
ate analytical theorems are applied. Using our strong laws and results
of Bingham and Goldie (1988) or Stadtmiiller (1995) strong laws for a
variety of summability methods can easily be obtained.
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