Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 261 - 275
DOI https://doi.org/10.1051/ps:2008011
Published online 04 July 2009
  1. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation. Encyclopaedia of Mathematics and its Applications. Cambridge University Press (1987).
  2. J. Dedecker and F. Merlevède, The conditional central limit theorem in Hilbert spaces. Stoch. Process. Appl. 108 (2003) 229–262.
  3. J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak Dependence: With Examples and Applications, volume 190 of Lect. Notes Statist. Springer (2007).
  4. D. Hamadouche, Invariance principles in Hölder spaces. Portugal. Math. 57 (2000) 127–151. [MathSciNet]
  5. M. Juodis, A. Račkauskas and Ch. Suquet, Hölderian functional central limit theorems for linear processes. ALEA Lat. Am. J. Probab. Math. Stat. 5 (2009) 47–64. [MathSciNet]
  6. J. Kuelbs, The invariance principle for Banach space valued random variables. J. Multiv. Anal. 3 (1973) 161–172. [CrossRef]
  7. J. Lamperti, On convergence of stochastic processes. Trans. Amer. Math. Soc. 104 (1962) 430–435. [CrossRef] [MathSciNet]
  8. M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, Berlin, Heidelberg (1991).
  9. F. Merlevède, M. Peligrad and S. Utev, Sharp conditions for the CLT of linear processes in a Hilbert space. J. Theoret. Probab. 10 (1997) 681–693. [CrossRef] [MathSciNet]
  10. F. Merlevède, M. Peligrad and S. Utev, Recent advances in invariance principles for stationary sequences. Probab. Surveys 3 (2006) 1–36. [CrossRef] [MathSciNet]
  11. A. Račkauskas and Ch. Suquet, Hölder versions of Banach spaces valued random fields. Georgian Math. J. 8 (2001) 347–362. [MathSciNet]
  12. A. Račkauskas and Ch. Suquet, Necessary and sufficient condition for the Hölderian functional central limit theorem. J. Theoret. Probab. 17 (2004) 221–243. [CrossRef] [MathSciNet]
  13. A. Račkauskas and Ch. Suquet, Hölder norm test statistics for epidemic change. J. Statist. Plann. Inference 126 (2004) 495–520. [CrossRef] [MathSciNet]
  14. A. Račkauskas and Ch. Suquet, Central limit theorems in Hölder topologies for Banach space valued random fields. Theor. Probab. Appl. 49 (2004) 109–125.
  15. A. Račkauskas and Ch. Suquet, Testing epidemic changes of infinite dimensional parameters. Stat. Inference Stoch. Process. 9 (2006) 111–134. [CrossRef] [MathSciNet]
  16. M. Talagrand, Isoperimetry and integrability of the sum of independent Banach-space valued random variables. Ann. Probab. 17 (1989) 1546–1570. [CrossRef] [MathSciNet]