Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 247 - 260
DOI https://doi.org/10.1051/ps:2008007
Published online 04 July 2009
  1. Ph. Biane and M. Yor, Variation sur une formule de Paul Lévy. Ann. Inst. H. Poincaré 23 (1987) 359–377.
  2. C. Borell, On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191–203. [MathSciNet]
  3. P. Cheridito and Nualart, D. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter Formula Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 1049–1081.
  4. L. Coutin, An introduction to (stochastic) calculus with respect to fractional Brownian motion, Séminaire de Probabilités XL, Lect. Notes Math. 1899 (2007) 3–65. Springer, Berlin.
  5. L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions Probab. Theory Relat. Fields 122 (2002) 108–140. [CrossRef] [MathSciNet]
  6. L. Coutin, P. Friz and N. Victoir, Good rough path sequences and applications to anticipating calculus. Ann. Probab. 35 (2007) 1172–1193. [CrossRef] [MathSciNet]
  7. L. Decreusefond, Stochastic Integration with respect to Volterra processes. Ann. Inst. H. Poincaré 41 (2005) 123–149. [CrossRef] [MathSciNet]
  8. L. Decreusefond and A.S. Üstünel, Stochastic Analysis of the Fractional Brownian Motion. Potential Anal. 10 (1997) 177–214. [CrossRef] [MathSciNet]
  9. X.M. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, École d'été de probabilités de Saint-Flour, 1974. Lect. Notes Math. 480 (1974) 1–96. [CrossRef]
  10. P. Friz and N. Victoir, Approximations of the Brownian rough path with applications to stochastic analysis. Ann. Inst. H. Poincaré 41 (2005) 703–724. [CrossRef] [MathSciNet]
  11. A. Lejay, Introduction to Rough Paths, Séminaire de probabilités XXXVII. Lect. Notes Math. 1832 (2003) 1–59.
  12. P. Levy, Wiener's random function and other Laplacian random function, Proc. 2 Berkeley Symp. Math. Proba. (1950) 171–186, Univ. of California.
  13. T. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215–310. [CrossRef] [MathSciNet]
  14. T. Lyons and Z. Qian, System Control and Rough Paths, Oxford University Press (2002).
  15. A. Millet and M. Sanz-Sole, Approximation of rough path of fractional Brownian motion, Seminar on Stochastic Analysis, Random Fields and Application V, Ascona 2005, Progr. Probab. 59. Birkhäuser Verlag (to appear) and arXiv math. PR/0509353.
  16. V. Pipiras and M.S. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on interval complete? Bernoulli 7 (2001) 873–897. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.