Free Access
Issue
ESAIM: PS
Volume 13, January 2009
Page(s) 301 - 327
DOI https://doi.org/10.1051/ps:2008010
Published online 21 July 2009
  1. R.J. Adler, An introduction to continuity, extrema and related topics for general Gaussian processes. Inst. Math. Statist. Lect. Notes-Monograph Ser. 12 (1990).
  2. J.-M. Azais, E. Gassiat C. and Mercadier, Asymptotic distribution and power of the likelihood ratio test for mixtures: bounded and unbounded case. Bernoulli 12 (2006) 775–799. [CrossRef] [MathSciNet]
  3. P.J. Bickel, C.A.J. Klaassen, Y. Ritov and J.A. Wellner, Efficient and adaptive estimation for semiparametric models. Johns Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD (1993).
  4. A. Chambaz, Testing the order of a model. Ann. Statist. 34 (2006) 1166–1203.
  5. A. Chambaz, A. Garivier and E. Gassiat, A mdl approach to hmm with Poisson and Gaussian emissions. Application to order identification. Submitted (2005).
  6. H. Chen and J. Chen, Large sample distribution of the likelihood ratio test for normal mixtures, Statist. Probab. Lett. 2 (2001) 125–133.
  7. H. Chen and J. Chen, Test for homogeneity in normal mixtures in the presence of a structural parameter. Statist. Sinica 13 (2003) 355–365.
  8. J. Chen and J.D. Kalbfleisch, Modified likelihood ratio test in finite mixture models with a structural parameter. J. Stat. Planning Inf. 129 (2005) 93–107. [CrossRef]
  9. H. Chen, J. Chen and J.D. Kalbfleisch, A modified likelihood ratio test for homogeneity in finite mixture models. J. Roy. Statist. Soc. B 63 (2001) 19–29. [CrossRef]
  10. H. Chen, J. Chen and J.D. Kalbfleisch, Testing for a finite mixture model with two components. J. Roy. Statist. Soc. B 66 (2004) 95–115. [CrossRef]
  11. H. Chernoff and E. Lander, Asymptotic distribution of the likelihood ratio test that a mixture of two binomials is a single binomial. J. Stat. Planning Inf. 43 (1995) 19–40. [CrossRef]
  12. T. Chihara, An introduction to orthogonal polynomials. Gordon and Breach, New York (1978).
  13. G. Ciuperca, Likelihood ratio statistic for exponential mixtures. Ann. Inst. Statist. Math. 54 (2002) 585–594. [CrossRef] [MathSciNet]
  14. D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models, and application to mixture models. ESAIM Probab. Statist. 1 (1997) 285–317. [CrossRef] [EDP Sciences]
  15. D. Dacunha-Castelle and E. Gassiat, Testing the order of a model using locally conic parameterization: population mixtures and stationary ARMA processes. Ann. Statist. 27 (1999) 1178–1209. [CrossRef] [MathSciNet]
  16. C. Delmas, On likelihood ratio test in Gaussian mixture models, Sankya 65 (2003) 513-531.
  17. B. Garel, Likelihood Ratio Test for Univariate Gaussian Mixture. J. Statist. Planning Inf. 96 (2001) 325–350. [CrossRef]
  18. B. Garel, Asymptotic theory of the likelihood ratio test for the identification of a mixture. J. Statist. Planning Inf. 131 (2005) 271–296. [CrossRef]
  19. E. Gassiat, Likelihood ratio inequalities with applications to various mixtures. Ann. Inst. H. Poincaré Probab. Statist. 6 (2002) 897–906. [CrossRef]
  20. E. Gassiat and C. Keribin, The likelihood ratio test for the number of components in a mixture with Markov regime, 2000. ESAIM Probab. Stat. 4 (2000) 25–52. [CrossRef] [EDP Sciences]
  21. J. Ghosh and P. Sen, On the asymptotic performance of the log likelihood ratio statistic for the mixture model and related results, Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II. Wadsworth, Belmont, CA (1985) 789–806.
  22. P. Hall and M. Stewart, Theoretical analysis of power in a two-component normal mixture model. J. Statist. Planning Inf. 134 (2005) 158–179. [CrossRef]
  23. J.A. Hartigan, A failure of likelihood asymptotics for normal mixtures, In Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer (Berkeley, CA, 1983), Vol. II. Wadsworth, Belmont, CA (1985) 807–810.
  24. J. Henna, Estimation of the number of components of finite mixtures of multivariate distributions. Ann. Inst. Statist. Math. 57 (2005) 655–664. [CrossRef] [MathSciNet]
  25. L.F. James, C.E. Priebe and D.J. Marchette, Consistent Estimation of Mixture Complexity. Ann. Statist. 29 (2001) 1281–1296. [CrossRef] [MathSciNet]
  26. C. Keribin, Consistent estimation of the order of mixture models. Sankhyā Ser. A 62 (2000) 49–66. [MathSciNet]
  27. M. Lemdani and O. Pons, Likelihood ratio test for genetic linkage. Statis. Probab. Lett. 33 (1997) 15–22. [CrossRef]
  28. M. Lemdani and O. Pons, Likelihood ratio in contamination models. Bernoulli 5 (1999) 705–719. [CrossRef] [MathSciNet]
  29. B.G. Lindsay, Mixture models: Theory, geometry, and applications. NSF-CBMS Regional Conf. Ser. Probab. Statist., Vol. 5. Hayward, CA, Institute for Mathematical Statistics (1995).
  30. X. Liu and Y. Shao, Asymptotics for the likelihood ratio test in two-component normal mixture models. J. Statist. Planning Inf. 123 (2004) 61–81. [CrossRef]
  31. X. Liu, C. Pasarica and Y. Shao, Testing homogeneity in gamma mixture models. Scand. J. Statist. 30 (2003) 227–239. [CrossRef] [MathSciNet]
  32. Y. Lo, Likelihood ratio tests of the number of components in a normal mixture with unequal variances. Statis. Probab. Lett. 71 (2005) 225–235. [CrossRef]
  33. F. Lord, Estimating the true-score distributions in psychological testing (an empirical bayes estimation problem). Psychometrika 34 (1969) 259–299. [CrossRef]
  34. G. McLachlan and D. Peel, Finite mixture models Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley-Interscience, New York (2000).
  35. C. Mercadier (2005), toolbox MATLAB. http://www.math.univ-lyon1.fr/mercadier/MAGP/
  36. N. Misra, H. Singh and E.J. Harner, Stochastic comparisons of poisson and binomial random varaibles with their mixtures. Statist. Probab. Lett. 65 279–290.
  37. S.A. Murphy and A.W. van der Vaart, Semiparametric likelihood ratio inference. Ann. Statist. 25 (1997) 1471–1509. [CrossRef] [MathSciNet]
  38. Y.S. Quin and B. Smith, Likelihood ratio test for homogeneity in normal mixtures in the presence of a structural parameter. Statist. Sinica 143 (2004) 1165–1177.
  39. Y.S. Quin and B. Smith, The likelihood ratio test for homogeneity in bivariate normal mixtures. J. Multivariate Anal. 97 (2006) 474–491. [CrossRef] [MathSciNet]
  40. D.M. Titterington, A.F.M. Smith and U.E. Makov, Statistical analysis of finite mixture distributions. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, Ltd (1985).
  41. A.W. van der Vaart and J.A. Wellner, Weak convergence and empirical processes, Springer Ser. Statist. Springer-Verlag (1996).
  42. A.W. van der Vaart, Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998).
  43. A.W. van der Vaart, Semiparametric Statistics, Lectures on probability theory and statistics, Saint-Flour, 1999. Lect. Notes Math. 1781 331–457. Springer, Berlin (2002).
  44. G.R. Wood, Binomial mixtures: geometric estimation of the mixing distribution. Ann. Statist. 5 (1999) 1706–1721.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.