Free Access
Volume 9, June 2005
Page(s) 283 - 306
Published online 15 November 2005
  1. S.G. Bobkov and F. Gotze, Exponential integrability and transportation cost related to logarithmic sobolev inequalities. J. Funct. Anal. 163 (1999) 1–28. [CrossRef] [MathSciNet]
  2. J.M. Borwein and A.S. Lewis, Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29 (1991) 325–338. [CrossRef] [MathSciNet]
  3. J.M. Borwein and A.S. Lewis, Partially-finite programming in L1 and the exitence of maximum entropy estimates. SIAM J. Optim. 3 (1993) 248–267. [CrossRef] [MathSciNet]
  4. P. Cattiaux and N. Gozlan, Deviations lower bounds and conditional principles. Prépublications de l'Université Paris 10, Nanterre (2002).
  5. I. Csiszar, I-divergence geometry of probability distributions and minimization problems. Ann. Prob. 3 (1975) 146–158. [CrossRef]
  6. I. Csiszar, Sanov property, generalized I-projection and a conditional limit theorem. Ann. Prob. 12 (1984) 768–793. [CrossRef] [MathSciNet]
  7. I. Csiszar, Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Statist. 19 (1991) 2032–2066. [CrossRef] [MathSciNet]
  8. I. Csiszar, F. Gamboa and E. Gassiat, Mem pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inform. Theory 45 (1999) 2253–2270. [CrossRef] [MathSciNet]
  9. D. Dacunha-Castelle and F. Gamboa, Maximum d'entropie et problèmes des moments. Ann. Inst. Henri Poincaré 26 (1990) 567–596.
  10. A. Dembo and O. Zeitouni, Large deviations techniques and applications. Second edition. Springer-Verlag (1998).
  11. J.D. Deuschel and D.W. Stroock, Large deviations. Academic Press (1989).
  12. R.S. Ellis, J. Gough and J.V. Pulé, The large deviation principle for measures with random weights. Rev. Math. Phys. 5 (1993) 659–692. [CrossRef] [MathSciNet]
  13. F. Gamboa, Méthode du maximum d'entropie sur la moyenne et applications. Thèse Orsay (1989).
  14. F. Gamboa and E. Gassiat, Maximum d'entropie et problèmes des moments: Cas multidimensionnel. Probab. Math. Statist. 12 (1991) 67–83. [MathSciNet]
  15. F. Gamboa and E. Gassiat, Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist. 25 (1997) 328–350. [CrossRef] [MathSciNet]
  16. N. Gozlan, Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport. Université Paris 10-Nanterre (2005).
  17. J.B. Hirriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Springer-Verlag (2001).
  18. C. Léonard, Minimizer of energy functionals. Acta Math. Hungar. 93 (2001) 281–325. [CrossRef] [MathSciNet]
  19. C. Léonard, A convex optimization problem arising from probabilistic questions. Prépublications de l'Université Paris 10-Nanterre (2004).
  20. C. Léonard, Dominating points and entropic projections. Prépublications de l'Université Paris 10-Nanterre (2004).
  21. P. Massart, Saint-Flour Lecture Notes (2003).
  22. J. Najim, A Cramer type theorem for weighted random variables. Electronic J. Probab. 7 (2002).
  23. R.T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag (1997).
  24. D.W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states and the equivalence of ensembles, R. Durret and H. Kesten Eds., Birkhäuser. Festschrift in honour of F. Spitzer (1991) 399–424.
  25. A. Van Der Vaart and J. Wellner, Weak convergence and empirical processes. Springer Series in Statistics. Springer (1995).