Free Access
Volume 7, March 2003
Page(s) 239 - 250
Published online 15 May 2003
  1. P. Assouad, Deux remarques sur l'estimation. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 1021-1024.
  2. L. Birgé, Sur un théorème de minimax et son application aux tests. Probab. Math. Statist. 3 (1984) 259-282. [MathSciNet]
  3. L. Birgé and P. Massart, An adaptative compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. [CrossRef] [MathSciNet]
  4. M.S. Birman and M.Z. Solomiak, Piecewise-polynomial approximation of functions of the classes Wp. Mat. Sbornik 73 (1967) 295-317. [CrossRef]
  5. A. Cohen, R. DeVore and W. Dahmen, Multiscale methods on bounded domains. Trans. AMS 352 (2000) 3651-3685. [CrossRef]
  6. A. Cohen, W. Dahmen, I. Daubechies and R. DeVore, Tree approximation and optimal encoding. Appl. Comput. Harmon. Anal. 11 (2001) 192-226. [CrossRef] [MathSciNet]
  7. T.A. Cover and J.A. Thomas, Element of Information Theory. Wiley Interscience (1991).
  8. B. Delyon and A. Juditski, On minimax wavelet estimators. Appl. Comput. Harmon. Anal. 3 (1996) 215-228. [CrossRef] [MathSciNet]
  9. R. DeVore, R. Kyriazis and P. Wang, Multiscale characterization of Besov spaces on bounded domains. J. Approx. Theory 93 (1998) 273-292. [CrossRef] [MathSciNet]
  10. R. DeVore, Nonlinear approximation. Cambridge University Press, Acta Numer. 7 (1998) 51-150.
  11. R. DeVore and G. Lorentz, Constructive Approximation. Springer-Verlag, New York (1993).
  12. D.L. Donoho, Unconditional bases and bit-level compression. Appl. Comput. Harmon. Anal. 3 (1996) 388-392. [CrossRef] [MathSciNet]
  13. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13-30. [CrossRef] [MathSciNet]
  14. W. Härdle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelet, Approximation and Statistical Applications. Springer Verlag, New York, Lecture Notes in Statist. 129 (1998).
  15. G. Kerkyacharian and D. Picard, Thresholding algorithms, maxisets and well-concentrated bases, with discussion. Test 9 (2000) 283-345. [CrossRef] [MathSciNet]
  16. G. Kerkyacharian and D. Picard, Minimax or maxisets? Bernoulli 8 (2002) 219-253.
  17. G. Kerkyacharian and D. Picard, Entropy, Universal coding, Approximation and bases properties. Technical Report (2001).
  18. G. Kerkyacharian and D. Picard, Density Estimation by Kernel and Wavelets methods - Optimality of Besov spaces. Statist. Probab. Lett. 18 (1993) 327-336. [CrossRef] [MathSciNet] [PubMed]
  19. A.N. Kolmogorov and V.M. Tikhomirov, π-entropy and π-capacity. Uspekhi Mat. Nauk 14 (1959) 3-86. (Engl. Translation: Amer. Math. Soc. Transl. Ser. 2 17, 277-364.)
  20. L. Le Cam, Convergence of estimator under dimensionality restrictions. Ann. Statist. 1 (1973) 38-53. [CrossRef] [MathSciNet]
  21. L. Le Cam, Metric dimension and statistical estimation, in Advances in mathematical sciences: CRM's 25 years. Montreal, PQ (1994) 303-311.
  22. G.G. Lorentz, Metric entropy and approximation. Bull. Amer. Math. Soc. 72 (1966) 903-937. [CrossRef] [MathSciNet]
  23. S.M. Nikolskii, Approximation of functions of several variables and imbedding theorems (Russian), Second Ed. Moskva, Nauka (1977). English translation of the first Ed., Berlin (1975).
  24. V.V. Petrov, Limit Theorems of Probability Theory: Sequences of independent Random Variables. Oxford University Press (1995).
  25. S.A. van de Geer, Empirical processes in M-estimation. Cambridge University Press (2000).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.